JOURNAL OF NATURAL RESOURCES ›› 2019, Vol. 34 ›› Issue (4): 867-880.doi: 10.31497/zrzyxb.20190415

• Resource Evaluation • Previous Articles     Next Articles

Spatial distribution and governance of coal-mine subsidence in China

LI Jia-ming1(), YU Jian-hui1, ZHANG Wen-zhong1,2()   

  1. 1. Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-04-25 Revised:2018-08-11 Online:2019-04-20 Published:2019-04-20

Abstract:

Coal has been China's dominant indigenous source of energy. Although the proportion of coal consumption in total (primary) energy consumption decreased steadily in recent years, China is still the world's largest coal producer and has been exporting substantial amounts of the energy. Due to a long history of underground coal mining, many more undermined areas have subsided than most people can imagine. Large coal-mine subsidence has resulted in serious structural damage to buildings, roads, irrigation ditches, underground utilities and pipelines. Besides, the consequences of ground subsidence generally consist of serious environment impact and livelihoods issues of residents. All these has drawn a lot of attention from scholars and government leaders. However, it still fails to figure out the whole picture of coal-mine subsidence and its consequences in China. The research has employed a unique dataset of mineral rights for coal in China to investigate spatial distribution of subsidence at present and foreseeable future. The damage to cities and farmland and the size of population involved in the subsidence areas has also been estimated through the comprehensive analysis of land use map and population and subsidence distribution. The results highlight the difference of potential losses of coal-mine subsidence between areas in China. For example, subsidence has significant influence on urban development in eastern China; while farmland in rural areas suffers relatively great loss in the western mountainous areas. Even so, it is not enough to answer how to govern and mitigate subsidence of those large coal-mines in China. Because governance modes and methods depend on not only characteristics of spatial distribution and potential losses but also natural conditions and the level of economic development. According to characteristics of potential losses, natural conditions and economic development, we further define six kinds of subsidence and figure out their governance directions and major works in China. The results are shown in the following: (1) The area of potential coal-mine subsidence is more than 60000 km2 in China. There are 4500 km2 of the urban-rural construction land and 26000 km2 of farmland in these subsiding areas. There are around 20 million residents involved in the subsidence. (2) According to climatic conditions and social and economic development levels, coal-mine subsidences fall into four types of areas with different governance directions in China: Focusing on eco-environmental modification; household livelihood security; exploitation and utilization; migration and relocation. (3) According to population and construction lands impacted and hydrogeological environment, exploitation-oriented areas are further divided into three types: Some should adapt to the changing environment; some should repair the infrastructures destroyed; some should develop characteristic industries such as tourism to increase residents' income.

Key words: coal-mine subsidence areas, spatial characteristics, governance, China