Hyper-spectral Remote Sensing Estimation for the Vegetation Cover

BAO Gang, BAO Yu-hai, QIN Zhi-hao, ZHOU Yi, HUANG Ming-xiang, ZHANG Hong-bin

JOURNAL OF NATURAL RESOURCES ›› 2013, Vol. 28 ›› Issue (7) : 1243-1254.

PDF(2764 KB)
PDF(2764 KB)
JOURNAL OF NATURAL RESOURCES ›› 2013, Vol. 28 ›› Issue (7) : 1243-1254. DOI: 10.11849/zrzyxb.2013.07.016
Resources Research Methods

Hyper-spectral Remote Sensing Estimation for the Vegetation Cover

  • BAO Gang1,2,3, BAO Yu-hai1, QIN Zhi-hao2, ZHOU Yi2, HUANG Ming-xiang1,4, ZHANG Hong-bin3
Author information +
History +

Abstract

The vegetation cover (VC) and corresponding vegetation canopy reflectance curves were collected in "Remotely sensed loading integrated testing site of non-driving aircraft (North testing site)"of Peking University, and the VC estimation models were developed and compared with each other based on the correlation between the conversion types (wavelet energy coefficient, principal component and vegetation index) of hyper-spectral curves and VC value. The result indicates: The hyper-spectral vegetation index-based model (R2>0.8, RMSE≤0.0188) is the best one of the three conversion types-based models, and EVI-based model is the best one among the other vegetation index-based models; the higher correlation coefficients existed between the second and the fourth single wavelet energy coefficient retrieved from 8-scale wavelet transformation and VC value (R2=0.811 and 0.813; RMSE=0.0199 and 0.0198, respectively); the multi-regression model established between multiple single wavelet energy coefficients and VC works better than the model based on the principal component analysis, the R2 and RMSE were improved by 0.058 and 0.03, respectively; the VC spatial distribution map through combining EVI-based model and TM-EVI indicates that the higher VC is distributed in the northern (75%) and southern (55%) parts of the study site and the lower VC (15%-55%) is distributed in the middle part. The spatial distribution is consistent with the land use/cover characteristics.

Key words

vegetation cover / wavelet energy coefficient / principal component analysis / vegetation index

Cite this article

Download Citations
BAO Gang, BAO Yu-hai, QIN Zhi-hao, ZHOU Yi, HUANG Ming-xiang, ZHANG Hong-bin. Hyper-spectral Remote Sensing Estimation for the Vegetation Cover[J]. JOURNAL OF NATURAL RESOURCES, 2013, 28(7): 1243-1254 https://doi.org/10.11849/zrzyxb.2013.07.016

References

[1] Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction [J]. Remote Sensing of Environment, 2002, 80(1): 76-87.

[2] Purevdorj T S, Tateishi R, Ishiyama T. Relationship between percent vegetation cover and vegetation indices [J]. International Journal of Remote Sensing, 1998, 19(18): 3519-3535.

[3] 瞿瑛, 刘素红, 夏江周. 照相法测量冬小麦覆盖度的图像处理方法研究[J]. 干旱区地理, 2010, 33(6): 998-1003. [QU Ying, LIU Su-hong, XIA Jiang-zhou. Image processing methods to determine the fractional vegetation cover of winter wheat using digital camera. Arid Land Geography, 2010, 33(6): 998-1003.]

[4] 章文波, 路炳军, 石伟. 植被覆盖度的照相测量及其自动计算[J]. 水土保持通报, 2009, 29(2): 39-42. [ZHANG Wen-bo, LU Bing-jun, SHI Wei. Determination of vegetation coverage by photograph and automatic calculation. Bulletin of Soil and Water Conservation, 2009, 29(2): 39-42.]

[5] De Roo A, Wesseling C, Ritsema C. LISEM: A single-event physically based hydrological and soil erosion model for drainage basins. I: Theory, input and output [J]. Hydrological Processes, 1996, 10(8): 1107-1117.

[6] 隋洪智, 田国良, 李付琴. 农田蒸散双层模型及其在干旱遥感监测中的应用[J]. 遥感学报, 1997, 1(3): 220-224. [SUI Hong-zhi, TIAN Guo-liang, LI Fu-qin. Two-layer model for monitoring drought using remote sensing. Journal of Remote Sensing, 1997, 1(3): 220-224.]

[7] Marticorena B, Bergametti G, Gillette D, et al. Factors controlling threshold friction velocity in semiarid and arid areas of the United States [J]. Journal of Geophysical Research, 1997, 102(D19): 23277-23287.

[8] Sellers P J, Los S O, Tucker C J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part Ⅱ: The generation of global fields of terrestrial biophysical parameters from satellite data [J]. Journal of Climate, 1996, 9(4): 706-737.

[9] 江洪, 王钦敏, 汪小钦. 福建省长汀县植被覆盖度遥感动态监测研究[J]. 自然资源学报, 2006, 21(1): 126-132. [JIANG Hong, WANG Qin-min, WANG Xiao-qin. Dyanamic monitoring of vegetation fraction by remote sensing in Changting county of Fujian Province. Journal of Natural Resources, 2006, 21(1): 126-132.]

[10] 王智, 师庆三, 王涛, 等. 1982-2006年新疆山地-绿洲-荒漠化系统植被覆盖变化时空特征[J]. 自然资源学报, 2011, 26(4): 609-618. [WANG Zhi, SHI Qing-san, WANG Tao, et al. Spatial-temporal characteristic of vegetation cover change in mountain-oasis-desert system of Xinjiang from 1982-2006. Journal of Natural Resources, 2011, 26(4): 609-618.]

[11] 范一大, 史培军, 刘三超. 我国北方沙尘暴与植被覆盖度关系研究[J]. 自然灾害学报, 2010, 19(6): 1-7. [FAN Yi-da, SHI Pei-jun, LU San-chao. Relationship between dust storm disaster and veget`ation fraction in northern China. Journal of Natural Disasters, 2010, 19(6): 1-7.]

[12] 张清春, 刘宝元, 翟刚. 植被与水土流失研究综述[J]. 水土保持研究, 2002, 9(4): 96-101. [ZHANG Qing-chun, LIU Bao-yuan, ZHAI Gang. Review on relationship between vegetation and soil and water loss. Research of Soil Water Conservation, 2002, 9(4): 96-101.]

[13] 章文波, 符素华, 刘宝元. 目估法测量植被覆盖度的精度分析[J]. 北京师范大学学报: 自然科学版, 2001, 37(3): 402-408. [ZHANG Wen-bo, FU Su-hua, LIU Bao-yuan. Error assessment of visual estimation plant coverage. Journal of Beijing Normal University: Natural Science, 2001, 37(3): 402-408.]

[14] 张云霞, 李晓兵, 陈云浩. 草地植被盖度的多尺度遥感与实地测量方法综述[J]. 地球科学进展, 2003, 18(1): 85-93. [ZHANG Yun-xia, LI Xiao-bing, CHEN Yun-hao. Overview of field and multi-scale remote sensing measurement approaches to grassland vegetation coverage. Advance in Earth Sciences, 2003, 18(1): 85-93.]

[15] Zhou Q, Robson M, Pilesjo P. On the ground estimation of vegetation cover in Australian rangelands[J]. International Journal of Remote Sensing, 1998, 19(9): 1815-1820.

[16] 李苗苗. 植被覆盖度的遥感估算方法研究[D]. 北京: 中国科学院研究生院, 2003. [LI Miao-miao. The Method of Vegetation Fraction Estimation by Remote Sensing. Beijing: Graduate University of the Chinese Academy of Sciences, 2003.]

[17] 吴云, 曾源, 赵炎, 等. 基于MODIS数据的海河流域植被覆盖度估算及动态变化分析[J]. 资源科学, 2010, 32(7): 1417-1424. [WU Yun, ZENG Yuan, ZHAO Yan, et al. Monitoring and dynamic analysis of fractional vegetation cover in the Hai river basin based on MODIS data. Resources Science, 2010, 32(7): 1417-1424.]

[18] 杨峰, 李建龙, 钱育蓉, 等. 天山北坡典型退化草地植被覆盖度监测模型构建与评价[J]. 自然资源学报, 2012, 27(8): 1340-1348. [YANG Feng, LI Jian-long, QIAN Yu-rong, et al. Estimating vegetation coverage of typical degraded grassland in the northern Tianshan moutains. Journal of Natural Resources, 2012, 27(8): 1340-1348.]

[19] Dymond J, Stephens P, Newsome P, et al. Percentage vegetation cover of a degrading rangeland from SPOT [J]. International Journal of Remote Sensing, 1992, 13(11): 1999-2007.

[20] Wittich K, Hansing O. Area-averaged vegetative cover fraction estimated from satellite data [J]. International Journal of Biometeorology, 1995, 38(4): 209-215.

[21] 李苗苗, 吴炳, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004, 26(4): 153-159. [LI Miao-miao, WU Bing-fang, YAN Chang-zhen, et al. Estimation of vegetation fraction in the upper basin of Miyun reservoir by remote sensing. Resources Science, 2004, 26(4): 153-159.]

[22] Qi J, Marsett R, Moran M, et al. Spatial and temporal dynamics of vegetation in the San Pedro River basin area [J]. Agricultural and Forest Meteorology, 2000, 105(1): 55-68.

[23] 刘占宇, 黄敬峰, 吴新宏, 等. 草地生物量的高光谱遥感估算模型[J]. 农业工程学报, 2006, 22(2): 111-115. [LIU Zhan-yu, HUANG Jing-feng, WU Xin-hong, et al. Hyperspectral remote sensing estimation models for the grassland biomass. Transaction of the CSAE, 2006, 22(2): 111-115.]

[24] Wessman C A, Aber J D, Peterson D L, et al. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems [J]. Nature, 1988, 335: 154-156.

[25] 宋开山, 张柏, 王宗明, 等. 基于小波分析的大豆叶面积高光谱反演[J]. 生态学杂志, 2007, 26(10): 1690-1696. [SONG Kai-shan, ZHANG Bai, WANG Zong-ming, et al. Wavelet transformation of in-situ measured hyperspectral data in Glycinemax LAI estimation. Chinese Journal of Ecology, 2007, 26(10): 1690-1696.]

[26] 刘占宇, 黄敬峰, 吴新宏, 等. 天然草地植被覆盖度的高光谱遥感估算模型[J]. 应用生态学报, 2006, 17(6): 997-1002. [LIU Zhan-yu, HUANG Jing-feng, WU Xin-hong, et al. Hyperspectral remote sensing estimation models on vegetation coverage of natural grassland. Chinese Journal of Applied Ecology, 2006, 17(6): 997-1002.]

[27] 王赛峰, 赵一凡, 乌兰, 等. 乌拉特前旗植被分布特点与保护[J]. 内蒙古林业调查设计, 2006, 29(5): 49-52. [WANG Sai-feng, ZHAO Yi-fan, WU Lan, et al. Characteristic of vegetation distribution and protection. Inner Mongolia Forestry Investigation and Design, 2006, 29(5): 49-52.]

[28] 张学霞, 朱清科, 吴根梅, 等. 数码照相法估算植被盖度[J]. 北京林业大学学报, 2008, 30(1): 164-169. [ZHANG Xue-xia, ZHU Qing-ke, WU Gen-mei, et al. Vegetation coverage assessment by digital photos. Journal of Beijing Forestry University, 2008, 30(1): 164-169.]

[29] 方美红, 刘湘南. 小波分析用于水稻叶片氮含量高光谱反演[J]. 应用科学学报, 2010, 28(4): 387-393. [FANG Mei-hong, LIU Xiang-nan. Estimation of nitrogen content in rice leaves with hyperspectral reflectance measurements using wavelet anlaysis. Journal of Applied Sciences, 2010, 28(4): 387-393.]

[30] 宋开山, 张柏, 王宗明, 等. 基于小波分析的大豆叶绿素a含量高光谱反演模型[J]. 植物生态学报, 2008, 32(1): 152-160. [SONG Kai-shan, ZHANG Bai, WANG Zong-ming, et al. Soybean chlorophyll a concentration estimation models based on wavelet-transformed, in situ collected, canopy hyperspectral data. Journal of Plant Ecology, 2008, 32(1): 152-160.]

[31] 宋开山, 张柏, 王宗明, 等. 小波分析在大豆叶绿素含量高光谱反演中的应用[J]. 中国农学通报, 2006, 22(9): 101-108. [SONG Kai-shan, ZHANG Bai, WANG Zong-ming, et al. Application of wavelet transformation in in-situ measured hyperspectral data for soybean LAI estimation. Chinese Agricultural Science Bulletin, 2006, 22(9): 101-108.]

[32] Rouse J, Haas R, Schell J, et al. Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium 1973. NASA SP-351, 1973: 309-317.

[33] Jordan C F. Derivation of leaf-area index from quality of light on the forest floor [J]. Ecology, 1969, 50(4): 663-666.

[34] Huete A, Liu H, Batchily K, et al. A comparison of vegetation indices over a global set of TM images for EOS-MODIS [J]. Remote Sensing of Environment, 1997, 59(3): 440-451.

[35] Huete A. A soil-adjusted vegetation index (SAVI) [J]. Remote Sensing of Environment, 1988, 25(3): 295-309.

[36] Kaufman Y J, Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS [J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 261-270.

[37] Qi J, Chehbouni A, Huete A, et al. A modified soil adjusted vegetation index [J]. Remote Sensing of Environment, 1994, 48(2): 119-126.

PDF(2764 KB)

1079

Accesses

0

Citation

Detail

Sections
Recommended

/