JOURNAL OF NATURAL RESOURCES ›› 2022, Vol. 37 ›› Issue (5): 1261-1276.doi: 10.31497/zrzyxb.20220511
• Dual Carbon Goals and Sustainable Urbanization • Previous Articles Next Articles
XU Ying-qi(), CHENG Yu(
), WANG Jing-jing, LIU Na
Received:
2021-08-30
Revised:
2022-01-10
Online:
2022-05-28
Published:
2022-07-28
Contact:
CHENG Yu
E-mail:1679669777@qq.com;383617726@qq.com
XU Ying-qi, CHENG Yu, WANG Jing-jing, LIU Na. Spatio-temporal evolution and influencing factors of carbon emission efficiency in low carbon city of China[J].JOURNAL OF NATURAL RESOURCES, 2022, 37(5): 1261-1276.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 4
Descriptive statistics of variables
变量名 | 单位 | 最小值 | 最大值 | 均值 | 标准差 |
---|---|---|---|---|---|
CE | — | 0.0579 | 1.0018 | 0.3284 | 0.1392 |
ED | 元 | 3127 | 467749 | 48293 | 36854 |
IS | % | 13.13 | 84.39 | 48.352 | 9.763 |
UR | % | 13.9185 | 100 | 54.7415 | 20.1995 |
GTI | 件 | 0 | 13337 | 510.5083 | 1243.912 |
FDI | 万美元/万元 | 3×10-5 | 0.0454 | 0.0054 | 0.0047 |
LU | 亿元/km2 | 0.0763 | 745.3947 | 31.6499 | 67.3002 |
Table 5
Stability test of panel data
变量值 | LLC统计量 | P值 | ADF统计量 | P值 | 结论 |
---|---|---|---|---|---|
CE | -2.7012 | 0.0035 | 5.9088 | 0.0000 | 平稳 |
ED | -1.6851 | 0.0460 | 4.8104 | 0.0000 | 平稳 |
IS | -10.6202 | 0.0000 | 15.3946 | 0.0000 | 平稳 |
UR | -8.5694 | 0.0000 | 8.5348 | 0.0000 | 平稳 |
GTI | -5.0725 | 0.0000 | 13.6172 | 0.0000 | 平稳 |
FDI | -5.8731 | 0.0000 | 14.9819 | 0.0000 | 平稳 |
LU | -9.4544 | 0.0000 | 11.5299 | 0.0000 | 平稳 |
Table 6
Model estimation results of low carbon pilot city in China
变量 | 随机效应模型 | 个体固定效应模型 | 时刻固定效应模型 | 双向固定效应模型 |
---|---|---|---|---|
ED | 0.0182*** | 0.0181*** | 0.0133*** | 0.0126*** |
(16.48) | (16.90) | (9.59) | (8.67) | |
IS | 0.0427*** | 0.0515*** | 0.0108*** | 0.0117*** |
(11.54) | (13.60) | (3.68) | (3.89) | |
UR | 0.0722*** | 0.0839*** | -0.0661*** | -0.0717*** |
(9.50) | (11.29) | (-7.97) | (-7.81) | |
GTI | 0.0022*** | 0.0022*** | 0.0015*** | 0.0015*** |
(7.90) | (8.09) | (5.04) | (4.75) | |
FDI | -0.1938*** | -0.1944*** | -0.0587*** | -0.1245*** |
(-7.09) | (-7.00) | (-2.62) | (-5.13) | |
LU | 0.0365*** | 0.0527*** | 0.0307*** | 0.0274*** |
(5.25) | (7.35) | (5.42) | (4.81) | |
Cons | -0.3699*** | -0.4102*** | 0.0187 | -0.0866 |
(-5.52) | (-6.01) | (0.36) | (-1.52) | |
城市固定 | — | 是 | 否 | 是 |
年份固定 | — | 否 | 是 | 是 |
R² | 0.7286 | 0.7309 | 0.3350 | 0.6418 |
F统计量 | — | 32.83 | 24.99 | 2.13 |
Table 7
Regression results of carbon emission efficiency of low carbon city in different regions of China
变量 | 东部试点城市 | 中部试点城市 | 西部试点城市 | ||||||
---|---|---|---|---|---|---|---|---|---|
Re | Fe | Fe-tw | Re | Fe | Fe-tw | Re | Fe | Fe-tw | |
ED | 0.0107*** | 0.0101*** | 0.0108*** | 0.0513*** | 0.0492*** | 0.0556*** | 0.0285*** | 0.0278*** | 0.0030 |
(8.17) | (7.72) | (6.26) | (14.44) | (13.41) | (10.96) | (8.65) | (9.18) | (0.47) | |
IS | 0.0253*** | 0.0389*** | 0.0148*** | 0.0397*** | 0.0415*** | 0.0002 | 0.0506*** | 0.0609*** | 0.0105* |
(4.19) | (5.48) | (2.94) | (6.28) | (6.49) | (0.02) | (9.10) | (11.83) | (1.80) | |
UR | 0.0443*** | 0.0608*** | -0.0439*** | -0.0090 | -0.0057 | -0.0818*** | 0.0655*** | 0.0890*** | -0.0976*** |
(3.53) | (4.67) | (-3.11) | (-0.74) | (-0.46) | (-3.22) | (4.51) | (6.77) | (-4.65) | |
GTI | 0.0020*** | 0.0022*** | 0.0015*** | 0.0009 | 0.0009 | 0.0051** | 0.0041** | 0.0021 | 0.0096*** |
(6.88) | (7.48) | (4.57) | (0.87) | (0.93) | (2.43) | (2.47) | (1.40) | (3.92) | |
FDI | -0.3434*** | -0.3446*** | -0.2040*** | -0.2019*** | -0.2308*** | 0.0286 | -0.0635 | -0.0252 | -0.2124*** |
(-8.04) | (-7.08) | (-5.40) | (-3.52) | (-3.92) | (0.40) | (-1.56) | (-0.70) | (-3.48) | |
LU | 0.0424*** | 0.0598*** | 0.0215*** | -0.2242*** | -0.1852*** | -0.4678*** | -0.0114 | 0.1533 | -0.1908 |
(6.13) | (7.83) | (3.65) | (-3.35) | (-2.61) | (-7.91) | (-0.09) | (1.24) | (-1.48) | |
Cons | -0.6180*** | -0.6832*** | -0.2850*** | -0.4571*** | -0.5218*** | 0.1510 | -0.1848* | -0.1374 | -0.2604* |
(-5.82) | (-5.49) | (-3.18) | (-3.67) | (-4.13) | (0.86) | (-1.85) | (-1.56) | (-1.79) | |
城市固定 | — | 是 | 是 | — | 是 | 是 | — | 是 | 是 |
年份固定 | — | 否 | 是 | — | 否 | 是 | — | 否 | 是 |
R² | 0.7259 | 0.7303 | 0.6955 | 0.8699 | 0.8702 | 0.7310 | 0.7575 | 0.7650 | 0.5723 |
F统计量 | — | 15.73 | 1.15 | — | 40.33 | 1.49 | — | 51.93 | 1.19 |
Table 8
Regression results of carbon emission efficiency of low carbon city of different scales and grades
变量 | 超大、特大城市 | 大城市 | 中小城市 | |||
---|---|---|---|---|---|---|
Re | Fe-tw | Re | Fe-tw | Re | Fe-tw | |
ED | 0.0061*** | 0.0044 | 0.0346*** | 0.0399*** | 0.0270*** | 0.0088** |
(3.42) | (1.35) | (6.90) | (6.50) | (11.45) | (2.41) | |
IS | 0.0359** | -0.0415** | 0.0455*** | 0.0003 | 0.0462*** | 0.0097** |
(2.29) | (-2.62) | (3.17) | (0.02) | (11.27) | (2.36) | |
UR | 0.0846** | 0.1014** | 0.0593*** | -0.0212 | 0.0483*** | -0.0605*** |
(2.48) | (2.35) | (2.68) | (-0.80) | (5.19) | (-3.76) | |
GTI | 0.0028*** | 0.0000 | 0.0020* | -0.0034 | 0.0039 | 0.0184*** |
(7.14) | (0.00) | (1.91) | (-1.21) | (1.38) | (4.25) | |
FDI | -0.5164*** | 0.3635* | -0.2769*** | -0.1162 | -0.0996** | -0.1303*** |
(-4.54) | (1.84) | (-3.23) | (-1.21) | (-2.95) | (-3.88) | |
LU | 0.0500*** | 0.0442*** | -0.1126 | -0.2887*** | -0.0056 | -0.0947** |
(6.23) | (4.77) | (-1.29) | (-2.77) | (-0.13) | (-2.25) | |
Cons | -1.0921*** | 1.4816*** | -0.5999*** | 0.0392 | -0.1870** | -0.0842 |
(-3.66) | (2.87) | (-2.86) | (0.14) | (-2.36) | (-1.14) | |
城市固定 | — | 是 | — | 是 | — | 是 |
年份固定 | — | 是 | — | 是 | — | 是 |
R² | 0.8276 | 0.8665 | 0.8408 | 0.8706 | 0.7248 | 0.4968 |
F统计量 | — | 1.31 | — | 2.09 | — | 1.28 |
Table 9
Robustness test results
变量 | 东部试点城市 | 中部试点城市 | 西部试点城市 |
---|---|---|---|
ED | 0.0122*** | 0.0562*** | 0.0188*** |
(3.09) | (11.68) | (4.50) | |
IS | 0.0103* | 0.0158* | 0.0061 |
(1.95) | (1.92) | (1.23) | |
UR | 0.0055 | -0.0509** | -0.0792*** |
(0.26) | (-2.50) | (-3.91) | |
GTI | 0.0011** | 0.0004 | 0.0177*** |
(2.25) | (0.25) | (5.29) | |
FDI | -0.3138*** | -0.0088 | -0.2673*** |
(-8.03) | (-0.11) | (-4.60) | |
LU | 0.0229** | -0.3059*** | -0.4229*** |
(2.22) | (-7.23) | (-3.11) |
[1] |
CAI B F, CUI C, ZHANG D, et al. China city-level greenhouse gas emissions inventory in 2015 and uncertainty analysis. Applied Energy, 2019, 253: 113579, Doi: 10.1016/j.apenergy.2019.113579.
doi: 10.1016/j.apenergy.2019.113579 |
[2] | 姬新龙, 杨钊. 碳排放权交易是否“加速”降低了碳排放量和碳强度?. 商业研究, 2021, 64(2): 46-55. |
[ JI X L, YANG Z. Does carbon emission trading "accelerate" and reduce carbon emissions and carbon intensity. Business Research, 2021, 64(2): 46-55.] | |
[3] | 田华征, 马丽. 中国工业碳排放强度变化的结构因素解析. 自然资源学报, 2020, 35(3): 639-653. |
[ TIAN H Z, MA L. Analysis on structural factors of changes in industrial carbon emission intensity in China. Journal of Natural Resources, 2020, 35(3): 639-653.]
doi: 10.31497/zrzyxb.20200311 |
|
[4] | 史丹, 李鹏. “双碳”目标下工业碳排放结构模拟与政策冲击. 改革, 2021, 34(12): 30-44. |
[ SHI D, LI P. Simulation of industrial carbon emission structure and policy impact under the goal of "double carbon". Reform, 2021, 34(12): 30-44.] | |
[5] | 周迪, 周丰年, 王雪芹. 低碳试点政策对城市碳排放绩效的影响评估及机制分析. 资源科学, 2019, 41(3): 546-556. |
[ ZHOU D, ZHOU F N, WANG X Q. Impact assessment and mechanism analysis of low carbon pilot policy on urban carbon emission performance. Resource Science, 2019, 41(3): 546-556.] | |
[6] | 程钰, 孙艺璇, 王鑫静, 等. 全球科技创新对碳生产率的影响与对策研究. 中国人口·资源与环境, 2019, 29(9): 30-40. |
[ CHENG Y, SUN Y X, WANG X J, et al. Research on the impact of global scientific and technological innovation on carbon productivity and countermeasures. China Population, Resources and Environment, 2019, 29(9): 30-40.] | |
[7] | 牛雄鹰, 丁言乔. 我国对外直接投资对“一带一路”沿线国家经济增长的影响: 基于碳排放的中介作用. 西北师大学报: 社会科学版, 2019, 56(3): 108-117. |
[ NU X Y, DING Y Q. The impact of China's foreign direct investment on the economic growth along the Belt and Road country. Based on the intermediary role of carbon emissions. Journal of Northwest Normal University: Social Sciences, 2019, 56(3): 108-117.] | |
[8] |
CHEN J Q, LIAN X Y, SU H N, et al. Analysis of China's carbon emission driving factors based on the perspective of eight major economic regions. Environmental Science and Pollution Research International, 2021, 28(7): 8181-8204.
doi: 10.1007/s11356-020-11044-z |
[9] | 张雪花, 许文博, 张宝安. 雄安新区对京津冀城市群低碳协同发展促进作用预评估. 经济地理, 2020, 40(3): 16-23, 83. |
[ ZHANG X H, XU W B, ZHANG B A. Pre evaluation of the role of Xiong'an New Area in promoting low-carbon coordinated development of Beijing Tianjin Hebei Urban Agglomeration. Economic Geography, 2020, 40(3): 16-23, 83.] | |
[10] |
王桂新, 李刚. 生态省建设的碳减排效应研究. 地理学报, 2020, 75(11): 2431-2442.
doi: 10.11821/dlxb202011012 |
[ WANG G X, LI G. Study on carbon emission reduction effect of ecological province construction. Journal of Geography, 2020, 75(11): 2431-2442.] | |
[11] |
王少剑, 高爽, 黄永源, 等. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测. 地理学报, 2020, 75(6): 1316-1330.
doi: 10.11821/dlxb202006016 |
[ WANG S J, GAO S, HUANG Y Y, et al. Temporal and spatial evolution pattern and prediction of China's urban carbon emission performance based on super efficiency SBM model. Journal of Geography, 2020, 75(6): 1316-1330.] | |
[12] | 邵海琴, 王兆峰. 中国交通碳排放效率的空间关联网络结构及其影响因素. 中国人口·资源与环境, 2021, 31(4): 32-41. |
[ SHAO H Q, WANG Z F. Spatial correlation network structure and influencing factors of traffic carbon emission efficiency in China. China Population, Resources and Environment, 2021, 31(4): 32-41.] | |
[13] | 张广泰, 贾楠. 中国建筑业碳排放效率测度与空间关联特征. 科技管理研究, 2019, 39(21): 236-242. |
[ ZHANG G T, JIA N. Carbon emission efficiency measurement and spatial correlation characteristics of China's construction industry. Research on Science and Technology Management, 2019, 39(21): 236-242.] | |
[14] | 黄国庆, 汪子路, 时朋飞, 等. 黄河流域旅游业碳排放脱钩效应测度与空间分异研究. 中国软科学, 2021, 36(4): 82-93. |
[ HUANG G Q, WANG Z L, SHI P F, et al. Measurement and spatial differentiation of carbon emission decoupling effect of tourism in the Yellow River Basin. China Soft Science, 2021, 36(4): 82-93.] | |
[15] |
MOHAMMAD S, AHM S, AHMED M, et al. Effective monitoring of carbon emissions from industrial sector using statistical process control. Applied Energy, 2021, 300(15): 117352-117364,Doi: 10.1016/J.APENERGY.2021.117352.
doi: 10.1016/j.apenergy.2021.117352 |
[16] | 田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价: 基于衍生指标与TOPSIS法的运用. 自然资源学报, 2021, 36(2): 395-410. |
[ TIAN C S, CHEN Y. Measurement and evaluation of inter provincial agricultural carbon emission and low carbon level in China: Based on derived indicators and application of TOPSIS method. Journal of Natural Resources, 2021, 36(2): 395-410.]
doi: 10.31497/zrzyxb.20210210 |
|
[17] |
CHENG J, YI J, DAI S, et al. Can low-carbon city construction facilitate green growth? Evidence from China's pilot low-carbon city initiative. Journal of Cleaner Production, 2019, 231(10): 1158-1170.
doi: 10.1016/j.jclepro.2019.05.327 |
[18] | 郭四代, 钱昱冰, 赵锐. 西部地区农业碳排放效率及收敛性分析: 基于SBM-Undesirable模型. 农村经济, 2018, 39(11): 80-87. |
[ GUO S D, QIAN Y B, ZHAO R. Analysis of agricultural carbon emission efficiency and convergence in Western China: Based on SBM undesirable model. Rural Economy, 2018, 39(11): 80-87.] | |
[19] | 张慧, 乔忠奎, 许可, 等. 资源型城市碳排放效率动态时空差异及影响机制: 以中部6省地级资源型城市为例. 工业技术经济, 2018, 37(12): 86-93. |
[ ZHANG H, QIAO Z K, XU K, et al. Dynamic temporal and spatial differences and impact mechanism of carbon emission efficiency of resource-based cities: Taking prefecture level resource-based cities in six provinces in Central China as an example. Industrial Technology and Economy, 2018, 37(12): 86-93.] | |
[20] | 黄和平, 乔学忠, 张瑾. 长江经济带旅游业碳排放时空演变分析. 贵州社会科学, 2019, 42(2): 143-152. |
[ HUANG H P, QIAO X Z, ZHANG J. Analysis of temporal and spatial evolution of carbon emissions from tourism in the Yangtze River Economic Belt. Guizhou Social Sciences, 2019, 42(2): 143-152.] | |
[21] | 王惠, 王树乔. 中国工业CO2排放绩效的动态演化与空间外溢效应. 中国人口·资源与环境, 2015, 25(9): 29-36. |
[ WANG H, WANG S Q. Dynamic evolution and spatial spillover effect of China's industrial CO2 emission performance. China Population, Resources and Environment, 2015, 25(9): 29-36.] | |
[22] |
王少剑, 黄永源. 中国城市碳排放强度的空间溢出效应及驱动因素. 地理学报, 2019, 74(6): 1131-1148.
doi: 10.11821/dlxb201906005 |
[ WANG S J, HANG Y Y. Spatial spillover effect and driving factors of urban carbon emission intensity in China. Journal of Geography, 2019, 74(6): 1131-1148.] | |
[23] | 杨欣, 谢向向. 武汉市建设用地扩张与碳排放效应的库兹涅茨曲线分析. 华中农业大学学报: 社会科学版, 2020, 40(4): 158-165, 181-182. |
[ YANG X, XIE X X. Kuznets curve analysis of construction land expansion and carbon emission effect in Wuhan. Journal of Huazhong Agricultural University: Social Science Edition, 2020, 40(4): 158-165, 181-182.] | |
[24] | 魏营, 杨高升. 低碳试点城市工业碳排放脱钩因素分解研究: 以镇江市为例. 资源开发与市场, 2018, 34(6): 766-773. |
[ WEI Y, YANG G S. Decomposition of decoupling factors of industrial carbon emissions in low-carbon cities: Taking Zhenjiang city as an example. Resource Development and Market, 2018, 34(6): 766-773.] | |
[25] | 禹湘, 陈楠, 李曼琪. 中国低碳试点城市的碳排放特征与碳减排路径研究. 中国人口·资源与环境, 2020, 30(7): 1-9. |
[ YU X, CHEN N, LI M Q. Study on carbon emission characteristics and carbon emission reduction path of China's low-carbon cities. China Population, Resources and Environment, 2020, 30(7): 1-9.] | |
[26] |
SHI R, CUI Y, ZHAO M J. Role of low-carbon technology innovation in environmental performance of manufacturing: Evidence from OECD countries. Environmental Science and Pollution Research International, 2021, 28(48): 68572-68584.
doi: 10.1007/s11356-021-15057-0 |
[27] |
XIAO H J, ZHOU Y, ZHANG N, et al. CO2 emission reduction potential in China from combined effects of structural adjustment of economy and efficiency improvement. Resources, Conservation & Recycling, 2021, 174: 105760, Doi: 10.1016/J.RESCONREC.2021.105760.
doi: 10.1016/J.RESCONREC.2021.105760 |
[28] | 李金叶, 于洋. 区域视角下碳排放驱动因素影响程度分析. 河北经贸大学学报, 2020, 41(6): 66-73. |
[ LI J Y, YU Y. Analysis on the influence degree of carbon emission driving factors from a regional perspective. Journal of Hebei University of Economics and Trade, 2020, 41(6): 66-73.] | |
[29] | 王鑫静, 程钰, 丁立, 等. “一带一路”沿线国家科技创新对碳排放效率的影响机制研究. 软科学, 2019, 33(6): 72-78. |
[ WANG X J, CHENG Y, DING L, et al. Research on the impact of technological innovation on carbon emission efficiency in the countries along the Belt and Road. Soft Science, 2019, 33(6): 72-78.] | |
[30] | 陈占明, 吴施美, 马文博, 等. 中国地级以上城市二氧化碳排放的影响因素分析: 基于扩展的STIRPAT模型. 中国人口·资源与环境, 2018, 28(10): 45-54. |
[ CHEN Z M, WU S M, MA W B, et al. Analysis of influencing factors of carbon dioxide emission in cities above prefecture level in China: Based on the extended STIRPAT model. China Population, Resources and Environment, 2018, 28(10): 45-54.] | |
[31] | 邓荣荣, 詹晶. 低碳试点促进了试点城市的碳减排绩效吗? 基于双重差分方法的实证. 系统工程, 2017, 35(11): 68-73. |
[ DENG R R, ZHAN J. Does low-carbon promote the carbon emission reduction performance of pilot cities: An empirical study based on double difference method. Systems Engineering, 2017, 35(11): 68-73.] | |
[32] | 王康, 李志学, 周嘉. 环境规制对碳排放时空格局演变的作用路径研究: 基于东北三省地级市实证分析. 自然资源学报, 2020, 35(2): 343-357. |
[ WANG K, LI Z X, ZHOU J. Research on the action path of environmental regulation on the evolution of temporal and spatial pattern of carbon emission: Based on the empirical analysis of prefecture level cities in three provinces of Northeast China. Journal of Natural Resources, 2020, 35(2): 343-357.]
doi: 10.31497/zrzyxb.20200208 |
|
[33] | 田华征, 马丽. 中国工业碳排放强度变化的结构因素解析. 自然资源学报, 2020, 35(3): 639-653. |
[ TIAN H Z, MA L. Analysis on structural factors of changes in industrial carbon emission intensity in China. Journal of Natural Resources, 2020, 35(3): 639-653.]
doi: 10.31497/zrzyxb.20200311 |
|
[34] |
TONE K. A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 2001, 130(3): 498-509.
doi: 10.1016/S0377-2217(99)00407-5 |
[35] | 宁论辰, 郑雯, 曾良恩. 2007-2016年中国省域碳排放效率评价及影响因素分析: 基于超效率SBM-Tobit模型的两阶段分析. 北京大学学报: 自然科学版, 2021, 57(1): 181-188. |
[ NING L C, ZHENG W, ZENG L E. Evaluation of China's provincial carbon emission efficiency and analysis of influencing factors from 2007 to 2016: Two-stage analysis based on super efficient SBM Tobit model. Journal of Peking University: Natural Science Edition, 2021, 57(1): 181-188.] | |
[36] | 张军, 吴桂英, 张吉鹏. 中国省际物质资本存量估算: 1952-2000. 经济研究, 2004, 50(10): 35-44. |
[ ZHANG J, WU G Y, ZHANG J P. Estimation of China's inter provincial physical capital stock: 1952-2000. Economic Research, 2004, 50(10): 35-44.] | |
[37] | 刘在洲, 汪发元. 绿色科技创新、财政投入对产业结构升级的影响: 基于长江经济带2003-2019年数据的实证分析. 科技进步与对策, 2021, 38(4): 53-61. |
[ LIU Z Z, WANG F Y. The impact of green scientific and technological innovation and financial investment on industrial structure upgrading: An empirical analysis based on the data of the Yangtze River Economic Belt from 2003 to 2019. Scientific and Technological Progress and Countermeasures, 2021, 38(4): 53-61.] | |
[38] | 裴潇, 蒋安璇, 叶云, 等. 民间投资、环境规制与绿色技术创新: 长江经济带11省市空间杜宾模型分析. 科技进步与对策, 2019, 36(8): 44-51. |
[ PEI X, JIANG A X, YE Y, et al. Private investment, environmental regulation and green technology innovation: Analysis of spatial Dobbin model of 11 provinces and cities in the Yangtze River Economic Belt. Scientific and Technological Progress and Countermeasures, 2019, 36(8): 44-51.] | |
[39] | 陆敏. 碳排放交易机制与生态效率关系的实证检验. 统计与决策, 2020, 36(10): 118-122. |
[ LU M. Empirical test of the relationship between carbon emission trading mechanism and ecological efficiency. Statistics and Decision Making, 2020, 36(10): 118-122.] |
|