JOURNAL OF NATURAL RESOURCES ›› 2021, Vol. 36 ›› Issue (9): 2368-2381.doi: 10.31497/zrzyxb.20210914
• Method Innovation for Territorial Space Security Planning • Previous Articles Next Articles
YANG Hai-feng, ZHAI Guo-fang()
Received:
2020-07-03
Revised:
2021-04-02
Online:
2021-09-28
Published:
2021-09-15
Contact:
ZHAI Guo-fang
E-mail:guofang_zhai@nju.edu.cn
YANG Hai-feng, ZHAI Guo-fang. Spatial assessment and driving mechanism of urban safety from the perspective of disaster risk:A case study of Chuzhou central city[J].JOURNAL OF NATURAL RESOURCES, 2021, 36(9): 2368-2381.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Data types, accuracy and source
数据类型 | 数据来源 | 精度 | 网址 |
---|---|---|---|
人口密度 | World pop | 100 m、2015年 | |
GDP | 中国资源环境数据云平台 | 1 km、2015年 | |
气象数据 | 国家气象科学数据共享服务平台 | 2000—2015年 | |
遥感植被数据 | 地理空间数据云 | 250 m、2015年 | |
DEM | 地理空间数据云 | 30 m | |
基础地理信息数据 | 安徽省城乡规划设计研究院 | 行政边界、土地利用、道路、避难点、火灾点以及医疗、消防点等数据 |
Table 2
Risk assessment index system of each single disaster in Chuzhou central city
目标层 | 准则层 | 各灾害类型指标层 | ||||
---|---|---|---|---|---|---|
地震 | 地质灾害 | 洪涝 | 高温 | 火灾 | ||
滁州市中心城区安全风险 | 压力 | 地震震级 分区A1 | 地质灾害易 发性B1 | 多年平均 降雨量C1 | 夏季舒适度 指数D1 | 与重大危险源 距离E1 |
地质灾害强度B2 | 距河距离C2 | 消防警情数量E2 | ||||
状态 | 人口密度A2 | 人口密度B3 | 人口密度C3 | 人口密度D2 | 人口密度E3 | |
建筑抗震 能力A3 | 坡度B4 | 海拔高度C4 | 植被覆盖度D3 | 消防安全用地 等级E4 | ||
植被覆盖度B5 | 地形起伏度C5 | 土地利用类型D4 | 建筑密度E5 | |||
地质岩土类型B6 | 河网密度C6 | |||||
响应 | 地均GDP A4 | 地均GDP B7 | 地均GDP C7 | 地均GDP D5 | 地均GDP E6 | |
路网密度A5 | 路网密度B8 | 路网密度C8 | 医疗设施D6 | 路网密度E7 | ||
公共空间 密度A6 | 防洪设施C9 | 消防力量覆 盖程度E8 | ||||
避难场所 可达性 A7 | 消防供水 能力E9 |
Table 3
Index weight of different disaster types
地震 | 地质灾害 | 洪涝 | 高温 | 火灾 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
指标 | 属性 | 权重 | 指标 | 属性 | 权重 | 指标 | 属性 | 权重 | 指标 | 属性 | 权重 | 指标 | 属性 | 权重 | ||||
A1 | + | 0.305 | B1 | + | 0.232 | C1 | + | 0.179 | D1 | + | 0.341 | E1 | + | 0.133 | ||||
A2 | + | 0.087 | B2 | + | 0.200 | C2 | - | 0.122 | D2 | + | 0.222 | E2 | + | 0.217 | ||||
A3 | 定性 | 0.171 | B3 | + | 0.083 | C3 | + | 0.038 | D3 | - | 0.124 | E3 | + | 0.027 | ||||
A4 | - | 0.042 | B4 | + | 0.085 | C4 | - | 0.122 | D4 | 定性 | 0.128 | E4 | 定性 | 0.075 | ||||
A5 | - | 0.137 | B5 | - | 0.041 | C5 | + | 0.072 | D5 | - | 0.066 | E5 | + | 0.135 | ||||
A6 | - | 0.132 | B6 | 定性 | 0.173 | C6 | - | 0.125 | D6 | - | 0.119 | E6 | - | 0.047 | ||||
A7 | - | 0.126 | B7 | - | 0.057 | C7 | - | 0.027 | E7 | - | 0.115 | |||||||
B8 | - | 0.129 | C8 | - | 0.135 | E8 | - | 0.114 | ||||||||||
C9 | - | 0.180 | E9 | - | 0.157 |
Table 7
Interactive impact types of factors
Xi∩Xj | P(Xi∩Xj) | 判断 | 交互关系作用类型 |
---|---|---|---|
人口密度(0.404)∩地均GDP(0.402) | 0.407 | P(Xi∩Xj)>max[P(Xi), P(Xj)] | 双线性增强 |
人口密度(0.404)∩用地类型风险(0.012) | 0.427 | P(Xi∩Xj)>P(Xi)+P(Xj) | 非线性增强 |
人口密度(0.404)∩植被覆盖度(0.078) | 0.429 | P(Xi∩Xj)>max[P(Xi), P(Xj)] | 双线性增强 |
人口密度(0.404)∩路网密度(0.013) | 0.409 | P(Xi∩Xj)>max[P(Xi), P(Xj)] | 双线性增强 |
人口密度(0.404)∩建筑承灾能力(0.095) | 0.422 | P(Xi∩Xj)>max[P(Xi), P(Xj)] | 双线性增强 |
地均GDP(0.402)∩用地类型风险(0.012) | 0.424 | P(Xi∩Xj)>P(Xi)+P(Xj) | 非线性增强 |
地均GDP(0.402)∩植被覆盖度(0.078) | 0.430 | P(Xi∩Xj)>max[P(Xi), P(Xj)] | 双线性增强 |
地均GDP(0.402)∩路网密度(0.013) | 0.408 | P(Xi∩Xj)>max[P(Xi), P(Xj)] | 双线性增强 |
地均GDP(0.402)∩建筑承灾能力(0.095) | 0.421 | P(Xi∩Xj)>max[P(Xi), P(Xj)] | 双线性增强 |
用地类型风险(0.012)∩植被覆盖度(0.078) | 0.131 | P(Xi∩Xj)>P(Xi)+P(Xj) | 非线性增强 |
用地类型风险(0.012)∩路网密度(0.013) | 0.029 | P(Xi∩Xj)>P(Xi)+P(Xj) | 非线性增强 |
用地类型风险(0.012)∩建筑承灾能力(0.095) | 0.114 | P(Xi∩Xj)>P(Xi)+P(Xj) | 非线性增强 |
植被覆盖度(0.078)∩路网密度(0.013) | 0.107 | P(Xi∩Xj)>P(Xi)+P(Xj) | 非线性增强 |
植被覆盖度(0.078)∩建筑承灾能力(0.095) | 0.150 | P(Xi∩Xj)>max[P(Xi), P(Xj)] | 双线性增强 |
路网密度(0.013)∩建筑承灾能力(0.095) | 0.108 | P(Xi∩Xj)>P(Xi)+P(Xj) | 非线性增强 |
[1] | 李迅. 防控重大风险,建设韧性城市. 城市发展研究, 2020, 27(4):1-6. |
[ LI X. To fend off and control major risks, build a resilient city. Urban Studies, 2020, 27(4):1-6.] | |
[2] | 黄曦涛, 李怀恩, 张瑜, 等. 基于PSR和AHP方法的西安市城市内涝脆弱性评价体系构建与脆弱度评估. 自然灾害学报, 2019, 28(6):167-175. |
[ HUANG X T, LI H E, ZHANG Y, et al. Construction of urban waterlogging vulnerability assessment system and vulnerability assessment based on PSR & AHP method in Xi'an city. Journal of Natural Disasters, 2019, 28(6):167-175.] | |
[3] | 翟国方, 崔功豪, 谢映霞, 等. 风险社会与弹性城市. 城市规划, 2015, 39(12):107-112. |
[ ZHAI G F, CUI G H, XIE Y X, et al. Risk society and resilience city. City Planning Review, 2015, 39(12):107-112.] | |
[4] | United Nations International Strategy for Disaster Reduction. Sendai framework for disaster risk reduction 2015-2030. New York: United Nations, 2015. |
[5] | 王鑫. 城市自然灾害安全评价体系与调控方法及应用研究. 郑州: 郑州大学, 2019. |
[ WANG X. Urban disaster safety integrated assessment system and regulation. Zhengzhou: Zhengzhou University, 2019.] | |
[6] |
CARRENO M L, CARDONA O D, BARBAT A H, et al. Holistic disaster risk evaluation for the urban risk management plan of Manizales, Colombia. International Journal of Disaster Risk Science, 2017, 8(3):258-269.
doi: 10.1007/s13753-017-0136-7 |
[7] | 王思成, 运迎霞, 李道勇. 城市雨洪安全风险测度与防灾规划管理响应研究. 现代城市研究, 2019, (11):125-131. |
[ WANG S C, YUN Y X, LI D Y. Study on safety risk measurement and disaster prevention planning response of urban rainstorm and flood. Modern Urban Research, 2019, (11):125-131.] | |
[8] | 尚志海. 基于人地关系的自然灾害风险形成机制分析. 灾害学, 2018, 33(2):5-9. |
[ SHANG Z H. Natural disaster risk formation mechanism based on man-land relationship. Journal of Catastrophology, 2018, 33(2):5-9.] | |
[9] |
RANA I A, ROUTRAY J K. Integrated methodology for flood risk assessment and application in urban communities of Pakistan. Natural Hazards, 2018, 91(1):239-266.
doi: 10.1007/s11069-017-3124-8 |
[10] | 万昔超, 殷伟量, 孙鹏, 等. 基于云模型的暴雨洪涝灾害风险分区评价. 自然灾害学报, 2017, 26(4):77-83. |
[ WANG X C, YIN W L, SUN P, et al. Risk division assessment of rainstorm-flood disasters based on cloud model. Journal of Natural Disasters, 2017, 26(4):77-83.] | |
[11] | 代文倩. 城市综合灾害风险评估. 唐山: 华北理工大学, 2018. |
[ DAI W Q. Urban Comprehensive disaster risk assessment. Tangshan: North China University of Science and Technology, 2018.] | |
[12] |
THIERRY P, STIELTJES L, KOUOKAM E, et al. Multi-hazard risk mapping and assessment on an active volcano: The GRINP project at Mount Cameroon. Natural Hazards, 2008, 45(3):429-456.
doi: 10.1007/s11069-007-9177-3 |
[13] |
SCHMIDT J, MATCHAM I, REESE S, et al. Quantitative multi-risk analysis for natural hazards: A framework for multi-risk modelling. Natural Hazards, 2011, 58(3):1169-1192.
doi: 10.1007/s11069-011-9721-z |
[14] | 刘希林, 尚志海. 中国自然灾害风险综合分类体系构建. 自然灾害学报, 2013, 22(6):1-7. |
[ LIU X L, SHANG Z H. Establishment of integrated classification of natural disaster risk in China. Journal of Natural Disasters, 2013, 22(6):1-7.] | |
[15] | 吴健生, 罗宇航, 王小玉, 等. 城市滑坡灾害生态风险不确定性分析与风险管理: 以深圳市为例. 生态学报, 2020, 40(11):3612-3621. |
[ WU J S, LUO Y H, WANG X Y, et al. Uncertainty analysis and risk management of ecological risk of urban landslide disaster: A case of Shenzhen city. Acta Ecological Sinica, 2020, 40(11):3612-3621.] | |
[16] | 曹罗丹, 李加林. 基于遥感与GIS的浙江省洪涝灾害综合风险评估研究. 自然灾害学报, 2015, 24(4):111-119. |
[ CAO L D, LI J L. Integrated risk assessment of flood disaster in Zhejiang province based on RS and GIS. Journal of Natural Disasters, 2015, 24(4):111-119.] | |
[17] |
CHEN N, CHEN L, MA Y C, et al. Regional disaster assessment of china based on self-organizing map: Clustering, visualization and ranking. International Journal of Disaster Risk Reduction, 2019, 33:196-206.
doi: 10.1016/j.ijdrr.2018.10.005 |
[18] | 尹占娥, 许世远, 殷杰, 等. 基于小尺度的城市暴雨内涝灾害情景模拟与风险评估. 地理学报, 2010, 65(5):553-562. |
[ YIN Z E, XU S Y, YIN J, et al. Small-scale based scenario modeling and disaster risk assessment of urban rainstorm water-logging. Acta Geographica Sinica, 2010, 65(5):553-562.] | |
[19] | WOLF T, MCGREGOR G. The development of a heat wave vulnerability index for London, United Kingdom. Weather & Climate Extremes, 2013, 1(1):59-68. |
[20] | 王国萍, 闵庆文, 丁陆彬, 等. 基于PSR模型的国家公园综合灾害风险评估指标体系构建. 生态学报, 2019, 39(22):8232-8244. |
[ WANG G P, MIN Q W, DING L B, et al. Comprehensive disaster risk assessment index system for national parks based on the PSR model. Acta Ecological Sinica, 2019, 39(22):8232-8244.] | |
[21] | 夏陈红, 王威, 马东辉. 城市综合灾害风险等级组合评价的SD模型. 中国安全科学学报, 2019, 29(4):164-170. |
[ XIA C H, WANG W, MA D H. Urban comprehensive disaster risk level combination evaluation model based on support degree. China Safety Science Journal, 2019, 29(4):164-170.] | |
[22] | 吴瑶瑶, 郭浩, 王颖, 等. 综合灾害风险防范凝聚力研究进展与展望. 灾害学, 2018, 33(4):217-222. |
[ WU Y Y, GUO H, WANG Y, et al. Research progress and prospect of integrated disaster risk governance consilience. Journal of Catastrophology, 2018, 33(4):217-222.] | |
[23] | 孔锋. 透视大尺度综合自然灾害风险评估的主要进展和展望. 灾害学, 2020, 35(2):148-153. |
[ KONG F. Perspective on the main progress and prospect of large-scale comprehensive natural disaster risk assessment. Journal of Catastrophology, 2020, 35(2):148-153.] | |
[24] | 明晓东, 徐伟, 刘宝印, 等. 多灾种风险评估研究进展. 灾害学, 2013, 28(1):126-145. |
[ MING X D, XU W, LIU B Y, et al. An Overview of the progress on muti-risk assessment. Journal of Catastrophology, 2013, 28(1):126-145.] | |
[25] | SHI P J, DU J, JI M X, et al. Urban assessment research of major natural disasters in China. Advances in Earth Science, 2006, 21(2):170-177. |
[26] | 代文倩, 初建宇, 马丹祥. 基于云模型的城市灾害综合风险评价方法. 华北理工大学学报: 自然科学版, 2019, 41(1):73-80. |
[ DAI W Q, CHU J Y, MA D X. Urban disaster comprehensive risk assessment method based on cloud model. Journal of North China University of Science and Technology: Natural Science Edition, 2019, 41(1):73-80.] | |
[27] | 赵鹏宇, 薛慧敏. 基于PSR模型的能源—生态复合区生态安全预警研究以山西省忻州市为例. 水土保持通报, 2020, 40(2):285-290, 298. |
[ ZHAO P Y, XUE H M. A study on pre-warning of ecological security in energy-ecological recombination region based on PSR: Taking Xinzhou city of Shanxi province as example. Bulletin of Soil and Water Conservation, 2020, 40(2):285-290, 298.] | |
[28] | 张崇淼, 李森, 张力喆, 等. 基于PSR模型的城市生态安全评价与贡献度研究: 以铜川市为例. 安全与环境学报, 2019, 19(3):1049-1056. |
[ ZHANG C M, LI S, ZHANG L Z, et al. Urban ecological security evaluation and contribution analysis by PSR model: A case study of Tongchuan city, Shanxi. Journal of Safety and Environment, 2019, 19(3):1049-1056.] | |
[29] | 彭建, 吴健生, 潘雅婧, 等. 基于PSR模型的区域生态持续性评价概念框架. 地理科学进展, 2012, 31(7):933-940. |
[ PENG J, WU J S, PAN Y J, et al. Evaluation for regional ecological sustainability based on PSR model: Conceptual framework. Progress in Geography, 2012, 31(7):933-940.] | |
[30] | 白洁, 王欢欢, 刘世存, 等. 流域水环境承载力评价: 以白洋淀流域为例. 农业环境科学学报, 2020, 39(5):1070-1076. |
[ BAI J, WANG H H, LIU S C, et al. Evaluations of water environment carrying capacity: A case study in the Baiyangdian watershed, China. Journal of Agro-Enviroment Science, 2020, 39(5):1070-1076.] | |
[31] | 王威, 夏陈红, 马东辉, 等. 耦合激励机制下多灾种综合风险评估方法. 中国安全科学学报, 2019, 29(3):161-167. |
[ WANG W, XIA C H, MA D H, et al. Muti-hazard comprehensive risk assessment based on coupling incentive mechanism. China Safety Science Journal, 2019, 29(3):161-167.] | |
[32] | 王鹏, 王亚娟, 刘小鹏, 等. 干旱地区生态移民土地利用变化生态风险: 以宁夏红寺堡区为例. 干旱地区农业研究, 2019, 37(1):58-65. |
[ WANG P, WANG Y J, LIU X P, et al. Ecological risk of ecological immigrants on land use change in arid areas: Hongsihu district of Ningxia as an example. Agricultural Research in the Arid Areas, 2019, 37(1):58-65.] | |
[33] | 徐超璇, 鲁春霞, 黄绍琳. 张家口地区生态脆弱性及其影响因素. 自然资源学报, 2020, 35(6):1288-1300. |
[ XU C X, LU C X, HUANG S L. Study on ecological vulnerability and its influencing factors in Zhangjiakou area. Journal of Natural Resources, 2020, 35(6):1288-1300.] | |
[34] |
王劲峰, 徐成东. 地理探测器:原理与展望. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010 |
[ WANG J F, XU C D. Geodetector: Principle and prospective. Acta Geographica Sinica, 2017, 72(1):116-134.] | |
[35] |
王钰, 胡宝清. 西江流域生态脆弱性时空分异及其驱动机制研究. 地球信息科学学报, 2018, 20(7):947-956.
doi: 10.12082/dqxxkx.2018.170633 |
[ WANG Y, HU B Q. Spatial and temporal differentiation of ecological vulnerability of Xijiang River in Guangxi and its driving mechanism based on GIS. Journal of Geo-Information Science, 2018, 20(7):947-956.] | |
[36] | 熊昌盛, 谭荣, 岳文泽. 快速城市化背景下不同建设用地扩张的驱动差异探讨: 以浙江省义乌市为例. 自然资源学报, 2018, 33(12):2124-2135. |
[ XIONG C S, TAN R, YUE W Z. Discussion on different driving factors of diversified construction land expansion in rapid urbanization area: A case study of Yiwu city. Journal of Natural Resources, 2018, 33(12):2124-2135.] |
[1] | ZHENG Tao, CHEN Shuang, ZHANG Tong, XU Li-ting, MA Li-ya. Research on driving mechanism of ecological land loss based on Bayesian network [J]. JOURNAL OF NATURAL RESOURCES, 2020, 35(12): 2980-2994. |
[2] | LIU Jian-zhi, FANG Yan-gang, WANG Ru-ru. Spatio-temporal evolution characteristics and driving mechanisms of agricultural multifunctions in Shandong province [J]. JOURNAL OF NATURAL RESOURCES, 2020, 35(12): 2901-2915. |
[3] | CHEN Shu-ting, GUO Bing, YANG Fei, HAN Bao-min, FAN Ye-wen, YANG Xiao, HE Tian-li, LIU Yue, YANG Wen-na. Spatial and temporal patterns of NPP and its response to climate change in the Qinghai-Tibet Plateau from 2000 to 2015 [J]. JOURNAL OF NATURAL RESOURCES, 2020, 35(10): 2511-2527. |
[4] | YAO Cheng-sheng, YIN Wei, LI Zheng-tong. The vulnerability assessment and driving mechanism analysis of China's food security system [J]. JOURNAL OF NATURAL RESOURCES, 2019, 34(8): 1720-1734. |
[5] | Zhi LI, Xiao-lin ZHANG, Hong-bo LI. Evolution characteristics and driving mechanism of urban-rural scale system at county level: A case of Zhangjiagang city, Jiangsu province [J]. JOURNAL OF NATURAL RESOURCES, 2019, 34(1): 140-152. |
[6] | HE San-wei, PAN Peng, WANG Hai-jun, YU Lian. Research on Ecological Environment Evaluation of Agricultural Land Based on PSR and Cloud Theory [J]. JOURNAL OF NATURAL RESOURCES, 2011, 26(8): 1346-1352. |
[7] | HE San-wei, PAN Peng, WANG Hai-jun, YU Lian. Research on Ecological Environment Evaluation of Agricultural Land Based on PSR and Cloud Theory [J]. JOURNAL OF NATURAL RESOURCES, 2011, 26(8): 1346-1352. |
[8] | LIU Yan-sui, PENG Liu-ying, WANG Da-wei . Analysis of the Situation and Mechanism of Land Use Conversion in the Southeast Coastal Area [J]. JOURNAL OF NATURAL RESOURCES, 2005, 20(3): 333-339. |
[9] | ZHANG Chuan-guo, FANG Chuang-lin . Driving mechanism analysis of ecological-economic-social capacity interactions in oasis systems of arid lands [J]. JOURNAL OF NATURAL RESOURCES, 2002, 17(2): 181-187. |
|