JOURNAL OF NATURAL RESOURCES ›› 2021, Vol. 36 ›› Issue (2): 395-410.doi: 10.31497/zrzyxb.20210210
• Regular Articles • Previous Articles Next Articles
Received:
2019-10-06
Revised:
2019-12-16
Online:
2021-02-28
Published:
2021-04-28
TIAN Cheng-shi, CHEN Yu. China's provincial agricultural carbon emissions measurement and low carbonization level evaluation: Based on the application of derivative indicators and TOPSIS[J].JOURNAL OF NATURAL RESOURCES, 2021, 36(2): 395-410.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Manure management carbon source and emission coefficient (kg/头/年)"
排放气体 | 地区 | 禽兽 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
奶牛 | 非奶牛 | 绵羊 | 山羊 | 猪 | 家禽 | 马 | 驴/骡 | 骆驼 | ||
CH4 | 华北 | 7.46 | 2.82 | 0.15 | 0.17 | 3.12 | 0.01 | 1.09 | 0.60 | 1.28 |
东北 | 2.23 | 1.02 | 0.15 | 0.16 | 1.12 | 0.01 | 1.09 | 0.60 | 1.28 | |
华东 | 8.33 | 3.31 | 0.26 | 0.28 | 5.08 | 0.02 | 1.64 | 0.90 | 1.92 | |
中南 | 8.45 | 4.72 | 0.34 | 0.31 | 5.85 | 0.02 | 1.64 | 0.90 | 1.92 | |
西南 | 6.51 | 3.21 | 0.48 | 0.53 | 4.18 | 0.02 | 1.64 | 0.90 | 1.92 | |
西北 | 5.93 | 1.86 | 0.28 | 0.32 | 1.38 | 0.01 | 1.09 | 0.60 | 1.28 | |
排放气体 | 地区 | 禽兽 | ||||||||
奶牛 | 非奶牛 | 绵羊 | 山羊 | 猪 | 家禽 | 马 | 驴/骡 | 骆驼 | ||
N2O | 华北 | 1.846 | 0.794 | 0.093 | 0.093 | 0.227 | 0.007 | 0.330 | 0.188 | 0.330 |
东北 | 1.096 | 0.913 | 0.057 | 0.057 | 0.266 | |||||
华东 | 2.065 | 0.846 | 0.113 | 0.113 | 0.175 | |||||
中南 | 1.710 | 0.805 | 0.106 | 0.106 | 0.157 | |||||
西南 | 1.884 | 0.691 | 0.064 | 0.064 | 0.159 | |||||
西北 | 1.447 | 0.545 | 0.074 | 0.074 | 0.195 |
Table 3
China's inter-provincial agricultural carbon emissions (万t CO2e)"
省(市、 自治区) | 农业碳排放总量 | 农业能源碳排放总量 | 农业非能源碳排放总量 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2006年 | 2011年 | 2016年 | 2006年 | 2011年 | 2016年 | 2006年 | 2011年 | 2016年 | |||
北京 | 303.58 | 283.79 | 191.89 | 127.56 | 118.90 | 63.76 | 176.02 | 164.89 | 128.13 | ||
天津 | 331.53 | 340.50 | 343.57 | 92.50 | 124.89 | 136.58 | 239.03 | 215.61 | 206.99 | ||
河北 | 3842.92 | 3443.68 | 3622.36 | 126.70 | 616.26 | 732.85 | 3716.22 | 2827.42 | 2889.50 | ||
山西 | 1491.38 | 1406.16 | 1466.55 | 421.70 | 547.66 | 530.07 | 1069.68 | 858.50 | 936.47 | ||
内蒙古 | 2849.89 | 3560.09 | 3924.07 | 391.13 | 921.56 | 1043.35 | 2458.76 | 2638.53 | 2880.72 | ||
辽宁 | 2328.42 | 2561.16 | 2565.50 | 506.94 | 527.15 | 510.45 | 1821.48 | 2034.01 | 2055.05 | ||
吉林 | 2426.01 | 2162.04 | 2474.17 | 415.97 | 231.41 | 390.59 | 2010.04 | 1930.63 | 2083.58 | ||
黑龙江 | 2939.40 | 3498.20 | 4170.41 | 564.33 | 644.12 | 1234.42 | 2375.07 | 2854.08 | 2935.99 | ||
上海 | 385.16 | 340.38 | 298.35 | 126.50 | 95.01 | 96.98 | 258.66 | 245.37 | 201.37 | ||
江苏 | 5214.81 | 5278.83 | 5233.19 | 555.78 | 768.75 | 774.75 | 4659.04 | 4510.08 | 4458.44 | ||
浙江 | 2454.35 | 2396.18 | 2239.20 | 622.95 | 685.28 | 740.61 | 1831.40 | 1710.90 | 1498.59 | ||
安徽 | 4691.98 | 4639.04 | 4859.00 | 251.73 | 375.66 | 406.61 | 4440.25 | 4263.39 | 4452.39 | ||
福建 | 2264.32 | 2086.65 | 1802.71 | 548.67 | 437.53 | 173.89 | 1715.65 | 1649.11 | 1628.82 | ||
江西 | 4318.49 | 4263.15 | 4374.57 | 294.74 | 211.23 | 225.15 | 4023.75 | 4051.92 | 4149.42 | ||
山东 | 6812.77 | 5042.44 | 5093.62 | 1373.27 | 655.82 | 800.71 | 5439.49 | 4386.62 | 4292.91 | ||
河南 | 7320.79 | 6493.30 | 6620.45 | 510.97 | 589.46 | 619.79 | 6809.82 | 5903.84 | 6000.66 | ||
湖北 | 5263.14 | 5596.47 | 5550.38 | 729.03 | 825.17 | 719.06 | 4534.11 | 4771.30 | 4831.32 | ||
湖南 | 6305.31 | 6415.26 | 6763.21 | 650.41 | 799.80 | 1010.80 | 5654.90 | 5615.46 | 5752.42 | ||
广东 | 3886.11 | 3803.24 | 3932.58 | 443.33 | 435.26 | 533.66 | 3442.78 | 3367.99 | 3398.91 | ||
广西 | 4210.26 | 3784.60 | 4025.33 | 100.31 | 127.17 | 345.29 | 4109.95 | 3657.43 | 3680.04 | ||
海南 | 885.86 | 953.34 | 863.83 | 107.57 | 199.32 | 157.07 | 778.29 | 754.02 | 706.75 | ||
重庆 | 1778.16 | 1902.06 | 1544.06 | 544.32 | 659.61 | 241.45 | 1233.84 | 1242.45 | 1302.61 | ||
四川 | 5486.46 | 5418.86 | 5507.82 | 362.04 | 454.26 | 514.47 | 5124.42 | 4964.60 | 4993.35 | ||
贵州 | 3021.17 | 2110.61 | 2454.58 | 577.46 | 221.15 | 456.52 | 2443.71 | 1889.46 | 1998.06 | ||
云南 | 3188.87 | 3348.63 | 3707.87 | 448.20 | 454.64 | 505.53 | 2740.67 | 2893.99 | 3202.34 | ||
陕西 | 1528.76 | 1497.88 | 1582.31 | 144.75 | 203.46 | 193.56 | 1384.01 | 1294.41 | 1388.75 | ||
甘肃 | 1592.12 | 1857.07 | 2038.73 | 153.82 | 207.12 | 223.83 | 1438.31 | 1649.94 | 1814.90 | ||
青海 | 956.54 | 1029.98 | 1070.98 | 16.77 | 35.61 | 37.88 | 939.77 | 994.36 | 1033.10 | ||
宁夏 | 386.90 | 435.21 | 468.21 | 23.04 | 36.14 | 31.19 | 363.86 | 399.07 | 437.02 | ||
新疆 | 2631.00 | 2425.80 | 3402.56 | 419.92 | 417.71 | 719.43 | 2211.09 | 2008.09 | 2683.13 |
Table 4
China's inter-provincial agricultural non-energy carbon emission structure (%)"
省(市、 自治区) | 水稻种植 | 土壤管理 | 禽畜粪便 | 肠道发酵 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2006年 | 2011年 | 2016年 | 2006年 | 2011年 | 2016年 | 2006年 | 2011年 | 2016年 | 2006年 | 2011年 | 2016年 | ||||
北京 | 0.11 | 0.04 | 0.04 | 44.19 | 47.08 | 43.77 | 25.15 | 25.36 | 26.68 | 30.55 | 27.52 | 29.51 | |||
天津 | 1.45 | 1.62 | 2.10 | 46.27 | 51.42 | 47.53 | 19.83 | 21.16 | 23.03 | 32.45 | 25.80 | 27.34 | |||
河北 | 0.79 | 0.97 | 0.93 | 36.59 | 51.52 | 51.92 | 18.91 | 18.18 | 18.43 | 43.72 | 29.32 | 28.72 | |||
山西 | 0.02 | 0.02 | 0.01 | 40.22 | 59.00 | 56.89 | 15.20 | 13.76 | 14.85 | 44.57 | 27.21 | 28.25 | |||
内蒙古 | 0.57 | 0.66 | 0.67 | 21.50 | 28.06 | 35.08 | 16.28 | 15.48 | 14.39 | 61.65 | 55.79 | 49.86 | |||
辽宁 | 6.91 | 6.53 | 5.51 | 36.84 | 41.76 | 41.31 | 16.09 | 15.90 | 16.17 | 40.16 | 35.81 | 37.01 | |||
吉林 | 4.20 | 4.60 | 4.82 | 31.38 | 43.09 | 47.33 | 14.28 | 13.05 | 12.42 | 50.14 | 39.26 | 35.43 | |||
黑龙江 | 15.26 | 18.78 | 19.85 | 31.64 | 36.25 | 38.70 | 11.95 | 10.56 | 10.38 | 41.15 | 34.41 | 31.07 | |||
上海 | 48.70 | 49.23 | 53.78 | 40.41 | 36.56 | 34.61 | 9.97 | 12.96 | 10.63 | 0.92 | 1.25 | 0.98 | |||
江苏 | 53.80 | 56.44 | 58.26 | 31.00 | 32.50 | 30.96 | 7.47 | 7.23 | 7.08 | 7.73 | 3.83 | 3.69 | |||
浙江 | 55.33 | 53.95 | 55.75 | 28.32 | 30.91 | 33.02 | 10.68 | 11.31 | 8.04 | 5.66 | 3.82 | 3.19 | |||
安徽 | 46.04 | 49.17 | 49.94 | 28.91 | 34.22 | 32.55 | 8.61 | 8.09 | 8.38 | 16.44 | 8.52 | 9.13 | |||
福建 | 39.95 | 40.07 | 39.17 | 34.46 | 37.13 | 38.39 | 12.53 | 12.77 | 12.51 | 13.06 | 10.03 | 9.93 | |||
江西 | 60.52 | 61.68 | 60.73 | 16.17 | 18.09 | 17.67 | 8.48 | 9.10 | 9.67 | 14.83 | 11.12 | 11.93 | |||
山东 | 1.05 | 1.27 | 1.11 | 47.26 | 56.03 | 54.37 | 17.11 | 16.98 | 18.76 | 34.58 | 25.71 | 25.77 | |||
河南 | 3.21 | 4.13 | 4.17 | 32.33 | 46.30 | 48.12 | 17.88 | 16.83 | 17.19 | 46.58 | 32.74 | 30.51 | |||
湖北 | 43.52 | 42.81 | 43.50 | 28.78 | 32.31 | 29.34 | 10.10 | 10.75 | 11.66 | 17.60 | 14.14 | 15.50 | |||
湖南 | 50.07 | 52.37 | 51.10 | 18.16 | 20.55 | 20.59 | 12.99 | 12.73 | 13.25 | 18.78 | 14.34 | 15.05 | |||
广东 | 40.58 | 41.73 | 40.48 | 26.93 | 32.14 | 33.81 | 14.42 | 14.02 | 13.43 | 18.07 | 12.11 | 12.27 | |||
广西 | 36.71 | 39.08 | 36.70 | 20.40 | 27.01 | 30.10 | 13.66 | 13.72 | 13.72 | 29.23 | 20.19 | 19.48 | |||
海南 | 27.22 | 30.08 | 28.19 | 25.52 | 36.90 | 39.40 | 11.71 | 11.74 | 12.23 | 35.56 | 21.28 | 20.19 | |||
重庆 | 29.85 | 30.27 | 29.10 | 28.64 | 34.24 | 33.30 | 15.75 | 16.29 | 16.34 | 25.77 | 19.20 | 21.26 | |||
四川 | 22.23 | 22.14 | 21.83 | 20.25 | 23.55 | 23.51 | 18.19 | 18.05 | 17.95 | 39.33 | 36.26 | 36.70 | |||
贵州 | 13.08 | 16.97 | 15.88 | 13.95 | 21.85 | 23.13 | 15.41 | 15.52 | 15.40 | 57.56 | 45.66 | 45.59 | |||
云南 | 5.86 | 5.79 | 5.48 | 24.96 | 31.75 | 34.35 | 17.97 | 17.02 | 16.75 | 51.22 | 45.44 | 43.42 | |||
陕西 | 2.36 | 2.52 | 2.39 | 40.26 | 59.89 | 62.82 | 12.11 | 9.47 | 9.08 | 45.27 | 28.12 | 25.72 | |||
甘肃 | 0.06 | 0.05 | 0.04 | 30.65 | 41.43 | 44.29 | 13.58 | 11.92 | 11.37 | 55.72 | 46.60 | 44.30 | |||
青海 | 0 | 0 | 0 | 3.10 | 4.14 | 4.60 | 16.09 | 15.84 | 15.30 | 80.81 | 80.02 | 80.10 | |||
宁夏 | 3.92 | 3.40 | 2.78 | 33.14 | 39.91 | 38.23 | 14.08 | 12.36 | 13.40 | 48.85 | 44.33 | 45.59 | |||
新疆 | 0.70 | 0.80 | 0.59 | 30.09 | 49.09 | 51.33 | 15.72 | 12.52 | 11.93 | 53.49 | 37.59 | 36.16 | |||
全国 | 24.77 | 26.43 | 25.71 | 28.26 | 34.73 | 35.53 | 14.01 | 13.43 | 13.50 | 32.96 | 25.41 | 25.26 |
Table 5
China's inter-provincial low carbonization level in 2006-2016"
省(市、 自治区) | 2006年 | 2007年 | 2008年 | 2009年 | 2010年 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 |
---|---|---|---|---|---|---|---|---|---|---|---|
北京 | 0.544 | 0.551 | 0.512 | 0.497 | 0.501 | 0.505 | 0.488 | 0.528 | 0.522 | 0.516 | 0.480 |
天津 | 0.481 | 0.455 | 0.413 | 0.394 | 0.419 | 0.433 | 0.435 | 0.456 | 0.452 | 0.454 | 0.450 |
河北 | 0.479 | 0.454 | 0.373 | 0.360 | 0.351 | 0.334 | 0.321 | 0.328 | 0.316 | 0.309 | 0.314 |
山西 | 0.471 | 0.412 | 0.421 | 0.417 | 0.417 | 0.419 | 0.420 | 0.434 | 0.437 | 0.420 | 0.436 |
内蒙古 | 0.324 | 0.319 | 0.270 | 0.268 | 0.265 | 0.309 | 0.314 | 0.350 | 0.366 | 0.361 | 0.320 |
辽宁 | 0.240 | 0.235 | 0.204 | 0.198 | 0.202 | 0.211 | 0.213 | 0.223 | 0.218 | 0.221 | 0.231 |
吉林 | 0.283 | 0.297 | 0.230 | 0.208 | 0.205 | 0.213 | 0.208 | 0.211 | 0.201 | 0.203 | 0.198 |
黑龙江 | 0.249 | 0.240 | 0.200 | 0.197 | 0.191 | 0.202 | 0.219 | 0.268 | 0.278 | 0.291 | 0.295 |
上海 | 0.510 | 0.514 | 0.508 | 0.482 | 0.492 | 0.512 | 0.505 | 0.549 | 0.545 | 0.546 | 0.529 |
江苏 | 0.439 | 0.432 | 0.417 | 0.411 | 0.415 | 0.419 | 0.416 | 0.425 | 0.417 | 0.407 | 0.409 |
浙江 | 0.476 | 0.479 | 0.484 | 0.468 | 0.472 | 0.479 | 0.472 | 0.492 | 0.477 | 0.442 | 0.419 |
安徽 | 0.411 | 0.376 | 0.339 | 0.336 | 0.345 | 0.347 | 0.352 | 0.355 | 0.352 | 0.346 | 0.353 |
福建 | 0.467 | 0.454 | 0.460 | 0.448 | 0.450 | 0.454 | 0.457 | 0.488 | 0.471 | 0.447 | 0.468 |
江西 | 0.438 | 0.430 | 0.410 | 0.410 | 0.415 | 0.418 | 0.420 | 0.421 | 0.419 | 0.415 | 0.417 |
山东 | 0.444 | 0.419 | 0.408 | 0.389 | 0.393 | 0.406 | 0.430 | 0.414 | 0.398 | 0.384 | 0.401 |
河南 | 0.480 | 0.446 | 0.368 | 0.357 | 0.369 | 0.383 | 0.379 | 0.378 | 0.362 | 0.352 | 0.362 |
湖北 | 0.379 | 0.388 | 0.377 | 0.373 | 0.375 | 0.373 | 0.373 | 0.383 | 0.377 | 0.368 | 0.374 |
湖南 | 0.459 | 0.455 | 0.431 | 0.420 | 0.428 | 0.425 | 0.419 | 0.417 | 0.410 | 0.399 | 0.403 |
广东 | 0.490 | 0.492 | 0.474 | 0.464 | 0.469 | 0.468 | 0.461 | 0.452 | 0.438 | 0.426 | 0.426 |
广西 | 0.457 | 0.429 | 0.376 | 0.369 | 0.375 | 0.377 | 0.374 | 0.374 | 0.356 | 0.350 | 0.350 |
海南 | 0.477 | 0.430 | 0.369 | 0.367 | 0.363 | 0.371 | 0.371 | 0.390 | 0.386 | 0.379 | 0.371 |
重庆 | 0.455 | 0.430 | 0.366 | 0.343 | 0.369 | 0.381 | 0.385 | 0.340 | 0.322 | 0.307 | 0.318 |
四川 | 0.358 | 0.358 | 0.329 | 0.322 | 0.328 | 0.336 | 0.331 | 0.324 | 0.308 | 0.301 | 0.307 |
贵州 | 0.450 | 0.387 | 0.240 | 0.237 | 0.252 | 0.268 | 0.248 | 0.249 | 0.236 | 0.248 | 0.257 |
云南 | 0.298 | 0.304 | 0.256 | 0.242 | 0.241 | 0.253 | 0.259 | 0.260 | 0.246 | 0.243 | 0.248 |
陕西 | 0.372 | 0.315 | 0.189 | 0.186 | 0.183 | 0.192 | 0.195 | 0.197 | 0.192 | 0.195 | 0.193 |
甘肃 | 0.247 | 0.238 | 0.194 | 0.194 | 0.186 | 0.199 | 0.201 | 0.200 | 0.198 | 0.201 | 0.199 |
青海 | 0.372 | 0.381 | 0.378 | 0.376 | 0.376 | 0.381 | 0.379 | 0.378 | 0.376 | 0.373 | 0.375 |
宁夏 | 0.270 | 0.291 | 0.246 | 0.244 | 0.226 | 0.241 | 0.258 | 0.253 | 0.239 | 0.251 | 0.255 |
新疆 | 0.333 | 0.316 | 0.233 | 0.209 | 0.192 | 0.193 | 0.197 | 0.224 | 0.224 | 0.229 | 0.251 |
[1] | SMITH P, BUSTAMANTE M, AHAMMAD H, et al. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. |
[2] | Food and Agriculture Organization of the United Nations. FAOSTAT. http://www.fao.org/faostat/zh/#data/GT, 2019-11-23. |
[3] | 中华人民共和国农业农村部. 关于印发《国家质量兴农战略规划(2018—2022年)》的通知. http://www.moa.gov.cn/nybgb/2019/201902/201905/t20190517_6309469.htm, 2019-02-20. |
[ Ministry of Agriculture and Rural Affairs, PRC. Notice on printing and distributing the national strategic plan for promoting agriculture by quality (2018-2022). http://www.moa.gov.cn/nybgb/2019/201902/201905/t20190517_6309469.htm, 2019-02-20.] | |
[4] |
TUBIELLO F N, SALVATORE M, ROSSI S, et al. The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 2013,8(1), Doi: 10.1088/1748-9326/8/1/015009.
pmid: 25580157 |
[5] | VALIN H, HAVLIíK P, MOSNIER A, et al. Agricultural productivity and greenhouse gas emissions: Trade-offs or synergies between mitigation and food security?. Environmental Research Letters, 2013,8(3), Doi: 10.1088/1748-9326/8/3/035019. |
[6] | VETTER S H, SAPKOTA T B, HILLIER J, et al. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agriculture, Ecosystems & Environment, 2017,237(2):234-241. |
[7] |
PETER C, HELMING K, NENDEL C. Do greenhouse gas emission calculations from energy crop cultivation reflect actual agricultural management practices? A review of carbon footprint calculators. Renewable and Sustainable Energy Reviews, 2017,67(1):461-476.
doi: 10.1016/j.rser.2016.09.059 |
[8] |
SWAINSON N, MUETZEL S, CLARK H. Updated predictions of enteric methane emissions from sheep suitable for use in the New Zealand national greenhouse gas inventory. Animal Production Science, 2018,58(6):973-979.
doi: 10.1071/AN15766 |
[9] | GOGLIO P, SMITH W N, GRANT B B, et al. Accounting for soil carbon changes in agricultural life cycle assessment (LCA): A review. Journal of Cleaner Production, 2015,19(104):23-39. |
[10] |
GOGLIO P, SMITH W N, GRANT B B, et al. A comparison of methods to quantify greenhouse gas emissions of cropping systems in LCA. Journal of Cleaner Production, 2018,172(3):4010-4017.
doi: 10.1016/j.jclepro.2017.03.133 |
[11] | 董红敏, 李玉娥, 陶秀萍, 等. 中国农业源温室气体碳排放与减排技术对策. 农业工程学报, 2008,24(10):269-273. |
[ DONG H M, LI Y E, TAO X P, et al. China's agricultural greenhouse gas emissions and emission reduction technology countermeasures. Transactions of the CSAE, 2008,24(10):269-273.] | |
[12] |
王若梅, 马海良, 王锦. 基于水—土要素匹配视角的农业碳排放时空分异及影响因素: 以长江经济带为例. 资源科学, 2019,41(8):1450-1461.
doi: 10.18402/resci.2019.08.06 |
[ WANG R M, MA H L, WANG J. Spatio-temporal differentiation and influencing factors of agricultural carbon emissions from the perspective of water-soil element matching: A case study of the Yangtze River Economic Belt. Resources Science, 2019,41(8):1450-1461.] | |
[13] | 李国志, 李宗植. 中国农业能源消费碳排放因素分解实证分析: 基于LMDI模型. 农业技术经济, 2010, (10):66-72. |
[ LI G Z, LI Z Z. Empirical analysis on factor decomposition of carbon emission in China's agricultural energy consumption: Based on LMDI model. Agricultural Technology Economy, 2010, (10):66-72.] | |
[14] | 谭秋成. 中国农业碳排放: 现状及挑战. 中国人口·资源与环境, 2011,21(10):69-75. |
[ TAN Q C. China's agricultural greenhouse gas emissions: Current status and challenges. China Population, Resources and Environment, 2011,21(10):69-75.] | |
[15] | 黄坚雄, 陈源泉, 隋鹏, 等. 农田温室气体净排放研究进展. 中国人口·资源与环境, 2011,21(8):87-94. |
[ HUANG J X, CHEN Y Q, SUI P, et al. Research progress on net greenhouse gas emissions from farmland. China Population, Resources and Environment, 2011,21(8):87-94.] | |
[16] | 陈罗烨, 薛领, 雪燕. 中国农业净碳汇时空演化特征分析. 自然资源学报, 2016,31(4):56-67. |
[ CHEN L Y, XUE L, XUE Y. Analysis on spatiotemporal evolution characteristics of agricultural net carbon sinks in China. Journal of Natural Resources, 2016,31(4):56-67.] | |
[17] |
田云, 张俊飚. 中国农业生产净碳效应分异研究. 自然资源学报, 2013,28(8):1298-1309.
doi: 10.11849/zrzyxb.2013.08.003 |
[ TIAN Y, ZHANG J B. Study on the differentiation of net carbon effect in agricultural production in China. Journal of Natural Resources, 2013,28(8):1298-1309.] | |
[18] | 田云, 张俊飚, 李波. 中国农业碳排放研究: 测算、时空比较及脱钩效应. 资源科学, 2012,34(11):2097-2105. |
[ TIAN Y, ZHANG J B, LI B. Research on agricultural carbon emissions in China: Measurement, space-time comparison and decoupling effect. Resources Science, 2012,34(11):2097-2105.] | |
[19] |
BOCKSTALLER C, GUICHARD L, MAKOWSKI D, et al. Agri-environmental indicators to assess cropping and farming systems. A review. Agronomy for Sustainable Development, 2008,28(1):139-149.
doi: 10.1051/agro:2007052 |
[20] |
DE OLDE E M, MOLLER H, MARCHAND F, et al. When experts disagree: The need to rethink indicator selection for assessing sustainability of agriculture. Environment, Development and Sustainability, 2017,19(4):1327-1342.
doi: 10.1007/s10668-016-9803-x |
[21] | SABIHA N E, SALIM R, RAHMAN S, et al. Measuring environmental sustainability in agriculture: A composite environmental impact index approach. Journal of Environmental Management, 2016,166(2):84-93. |
[22] | MARCHAND F, DEBRUYNE L, TRISTE L, et al. Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecology and Society, 2014,19(3):46. |
[23] | 揭懋汕, 郭洁, 陈罗烨, 等. 碳约束下中国县域尺度农业全要素生产率比较研究. 地理研究, 2016,35(5):98-108. |
[ JIE M S, GUO J, CHEN L Y, et al. Comparative study on total factor productivity of agriculture at county scale in China under carbon constraints. Geographical Research, 2016,35(5):98-108.] | |
[24] | 展进涛, 徐钰娇, 葛继红. 考虑碳排放成本的中国农业绿色生产率变化. 资源科学, 2019,41(5):62-74. |
[ ZHAN J T, XU Y J, GE J H. Changes of agricultural green productivity in China considering carbon emission cost. Resource Science, 2019,41(5):62-74.] | |
[25] | 卢新海, 匡兵, 李菁. 碳排放约束下耕地利用效率的区域差异及其影响因素. 自然资源学报, 2018,33(4):657-668. |
[ LU X H, KUANG B, LI J. Regional differences and influencing factors of cultivated land use efficiency under carbon emission constraints. Journal of Natural Resources, 2018,33(4):657-668.] | |
[26] | 王宝义, 张卫国. 中国农业生态效率测度及时空差异研究. 中国人口·资源与环境, 2016,26(6):11-19. |
[ WANG B Y, ZHANG W G. Study on the time and space differences of agricultural eco-efficiency measurement in China. China Population, Resources and Environment, 2016,26(6):11-19.] | |
[27] | 高鸣, 宋洪远. 中国农业碳排放绩效的空间收敛与分异: 基于Malmquist-luenberger指数与空间计量的实证分析. 经济地理, 2015,35(4):142-148, 185. |
[ GAO M, SONG H Y. Spatial convergence and differentiation of agricultural carbon emission performance in China: An empirical analysis based on Malmquist-luenberger index and spatial measurement. Economic Geography, 2015,35(4):142-148, 185.] | |
[28] | 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算. 中国人口·资源与环境, 2012,22(7):21-27. |
[ MIN J S, HU H. Measurement of greenhouse gas emissions from agricultural production in China. China Population, Resources and Environment, 2012,22(7):21-27.] | |
[29] | DACE E, BLUMBERGA D. How do 28 European Union Member States perform in agricultural greenhouse gas emissions? It depends on what we look at: Application of the multi-criteria analysis. Ecological Indicators, 2016,71(12):352-358. |
[30] | 胡向东, 王济民. 中国畜禽碳排放量估算. 农业工程学报, 2010,26(10):247-252. |
[ HU X D, WANG J M. Estimation of greenhouse gas emissions from livestock and poultry in China. Transactions of the CSAE, 2010,26(10):247-252.] | |
[31] | 中华人民共和国农业农村部. 农业部办公厅关于印发《2016年畜禽养殖标准化示范创建活动工作方案》的通知. , 2016-02-15. |
[ Ministry of Agriculture and Rural Affairs, PRC. Notice of the general office of the ministry of agriculture on printing and distributing the work plan for the 2016 model establishment of livestock and poultry standardization. , 2016-02-15.] | |
[32] | 中华人民共和国国务院办公厅. 国务院关于促进畜牧业持续健康发展的意见. http://www.gov.cn/zwgk/2007-02/06/content_519464.htm, 2007-02-06. |
[ General Office of the State Council, PRC. Opinions of the State Council on promoting sustainable and healthy development of animal husbandry. http://www.gov.cn/zwgk/2007-02/06/content_519464.htm, 2007-02-06.] |
[1] | KUANG Li-hua, YE Ying-cong, ZHAO Xiao-min, GUO Xi. Evaluation and Obstacle Factor Diagnosis of Cultivated Land System Security in Yingtan City Based on the Improved TOPSIS Method [J]. JOURNAL OF NATURAL RESOURCES, 2018, 33(9): 1627-1641. |
[2] | SONG Bo, MU Yue-ying, HOU Ling-ling. Study on the Effect of Farm Households' Specializationon Low-carbon Agriculture: Evidence from Vegetable Growers in Beijing, China [J]. JOURNAL OF NATURAL RESOURCES, 2016, 31(3): 468-476. |
[3] | TIAN Yun, ZHANG Jun-biao, WU Xian-rong, CHENG Lin-lin. Research on Dynamic Change and Regional Differences of China’s Planting Industry Carbon Sink Surplus [J]. JOURNAL OF NATURAL RESOURCES, 2015, 30(11): 1885-1895. |
[4] | YU Hu, LU Lin, ZHU Dong-fang. Coordination and Influencing Factors between Urban Tourism and Urban Development in the Yangtze River Delta [J]. JOURNAL OF NATURAL RESOURCES, 2012, (10): 1746-1757. |
|