[1] ZHANG Y H, DING W X, LUO J F, et al.Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biology and Biochemistry, 2010, 42(10): 1712-1720. [2] NORDHAUS I, SALEWSKI T, JENNERJAHN T C.Interspecific variations in mangrove leaf litter decomposition are related to labile nitrogenous compounds. Estuarine, Coastal and Shelf Science, 2017, 192: 137-148. [3] 杨万勤, 邓仁菊, 张健. 森林凋落物分解及其对全球气候变化的响应. 应用生态学报, 2007, 18(12): 2889-2895. [YANG W Q, DENG R J, ZHANG J.Forest litter decomposition and its response to global climate change. Chinese Journal of Applied Ecology, 2007, 18(12): 2889-2895.] [4] COMPSON Z G, HUNGATE B A, WHITHAM T G, et al.Linking tree genetics and stream consumers: Isotopic tracers elucidate controls on carbon and nitrogen assimilation. Ecology, 2018, 99(8): 1759-1770. [5] TONG C, LIU B G.Litter decomposition and nutrient dynamics in different tidal water submergence environments of estuarine tidal wetland. Geographical Research, 2009, 28(1): 118-128. [6] 曾从盛, 张林海, 王天鹅, 等. 闽江河口湿地植物枯落物立枯和倒伏分解主要元素动态. 生态学报, 2012, 32(20): 6289-6299. [ZENG C S, ZHANG L H, WANG T E, et al.Nutrient dynamics of the litters during standing and sediment surface decay in the Min River estuarine marsh. Acta Ecologica Sinica, 2012, 32(20): 6289-6299.] [7] SUN Z G, MOU X J, SUN W L.Decomposition and heavy metal variations of the typical halophyte litters in coastal marshes of the Yellow River Estuary, China. Chemosphere, 2016, 147: 163-172. [8] JANOUSEK C N, BUFFINGTON K J, GUNTENSPERGEN G R, et al.Inundation, vegetation, and sediment effects on litter decomposition in pacific coast tidal marshes. Ecosystems, 2017, 20(7): 1296-1310. [9] MOU X J, SUN Z G, WANG L L, et al.Nitrogen cycle of a typical Suaeda salsa marsh ecosystem in the Yellow River Estuary. Journal of Environmental Science, 2011, 23(6): 958-967. [10] GATUNE C, VANREUSEL A, CNUDDE C, et al.Decomposing mangrove litter supports a microbial biofilm with potential nutritive value to penaeid shrimp post larvae. Journal of Experimental Marine Biology & Ecology, 2012, 426(9): 28-38. [11] KEUSKAMP J A, HEFTING M M, DINGEMANS B J, et al.Effects of nutrient enrichment on mangrove leaf litter decomposition. Science of the Total Environment, 2015, 508: 402-410. [12] 卢昌义, 尹毅, 林鹏. 红海榄红树林下落叶分解的动态. 厦门大学学报: 自然科学版, 1994, 33: 56-61. [LU C Y, YIN Y, LIN P.Studies on dynamics of litter leaf decomposition in a Rhizophora Stylosa Mangrove Forest in Guangxi, China. Journal of Xiamen University: Natural Science, 1994, 33: 56-61.] [13] YE Y, CHEN Y P, CHEN G C.Litter production and litter elemental composition in two rehabilitated Kandelia obovata mangrove forests in Jiulongjiang Estuary, China. Marine Environmental Research, 2013, 83(2): 63-72. [14] 仝川, 刘白贵. 不同水淹环境下河口感潮湿地枯落物分解及营养动态. 地理研究, 2009, 28(1): 118-128. [TONG C, LIU B G.Litter decomposition and nutrient dynamics in different tidal water submergence environments of estuarine tidal wetland. Geographical Research, 2009, 28(1): 118-128.] [15] TONG C, ZHANG L H, WANG W Q, et al.Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh. Environmental Research, 2011, 111(7): 909-916. [16] LIU P P, WANG Q, BAI J H, et al.Decomposition and return of C and N of plant litters of Phragmites australis and Suaeda salsa in typical wetlands of the Yellow River Delta, China. Procedia Environmental Sciences, 2010, 2(2): 1717-1726. [17] SUN Z G, MOU X J, SUN W L.Potential effects of tidal flat variations on decomposition and nutrient dynamics of Phragmites australis, Suaeda salsa, and Suaeda glauca, litter in newly created marshes of the Yellow River Estuary, China. Ecological Engineering, 2016, 93: 175-186. [18] STRONG D R, AYRES D R.Ecological and evolutionary misadventures of Spartina. Annual Review of Ecology, Evolution, and Systematics, 2013, 44(1): 389-410. [19] 张光亮, 白军红, 贾佳, 等. 互花米草入侵对黄河口盐沼湿地土壤溶解性有机碳空间分布的影响. 北京师范大学学报: 自然科学版, 2018, 54(1): 90-97. [ZHANG G L, BAI J H, JIA J, et al.Impact of Spartina alterniflora invasion on spatial distribution of dissolved organic carbon in salt marsh soils of the Yellow River Estuary, China. Journal of Beijing Normal University: Natural Science, 2018, 54(1): 90-97.] [20] 骆梦, 王青, 邱冬冬, 等. 黄河三角洲典型潮沟系统水文连通特征及其生态效应. 北京师范大学学报: 自然科学版, 2018, 54(1): 17-24. [LUO M, WANG Q, QIU D D, et al.Hydrological connectivity characteristics and ecological effects of a typical tidal channel system in the Yellow River Delta. Journal of Beijing Normal University: Natural Science, 2018, 54(1): 17-24.] [21] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. [BAO S D. Soil Agrochemical Analysis.Beijing: China Agricultural Press, 2000.] [22] OLSON J S.Energy storage and the balance of products and decomposers in ecological systems. Ecology, 1963, 44(2): 322-331. [23] HARMON M E, FRANKLIN J F, SWANSON F J, et al.Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 1986, 15(C): 133-302. [24] BIRD J A, KLEBER M, TORN M S.13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Organic Geochemistry, 2008, 39(4): 465-477. [25] 李佳芮. 黄河三角洲潮间带大型底栖生物生态学研究. 青岛: 中国海洋大学, 2011. [LI J R.Macrobenthic ecology of the intertidal zones of Yellow River Delta. Qingdao: Ocean University of China, 2011.] [26] MANNING P, SAUNDERS M, BAEDGETT R D, et al.Direct and indirect effects of nitrogen deposition on litter decomposition. Soil Biology and Biochemistry, 2008, 40(3): 688-698. [27] LAIHO R, LAINE J, TRETTIN C C.Scots pine litter decomposition along drainage succession and soil nutrient gradients in peatland forests, and the effects of inter-annual weather variation. Soil Biology and Biochemistry, 2004, 36(7): 1095-1109. [28] XIE Y J, XIE Y H, XIAO H Y, et al.Controls on litter decomposition of emergent macrophyte in Dongting Lake Wetlands. Ecosystems, 2017, 20(7): 1383-1389. [29] BOYNTON W R, CEBALLOS M A C, BAILEY E M, et al. Oxygen and nutrient exchanges at the sediment-water interface: A global synthesis and critique of estuarine and coastal data. Estuaries and Coasts, 2017, 41(2): 301-333. [30] ANDERSSON S, NILSSON S I.Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biology and Biochemistry, 2001, 33(9):1181-1191. [31] 彭少麟, 刘强. 森林凋落物动态及其对全球变暖的响应. 生态学报, 2002, 22(9): 1534-1544. [PENG S L, LIU Q.The dynamic of forest litter and its responses to global warming. Acta Ecologica Sinica, 2002, 22(9): 1534-1544.] [32] LIAO C Z, LUO Y Q, FANG C M, et al.Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary. Oecologia, 2008, 156(3): 589-600. [33] ZHANG X H, SONG C C, MAO R, et al.Litter mass loss and nutrient dynamics of four emergent macrophytes during aerial decomposition in freshwater marshes of the Sanjiang plain, Northeast China. Plant and Soil, 2014, 385(1-2): 139-147. [34] ROMERO L M, SMITH T J, FOURQUREAN J W.Changes in mass and nutrient content of wood during decomposition in a South Florida Mangrove Forest. Journal of Ecology, 2005, 93(3): 618-631. [35] CAO L, SONG J M, LI X G, et al.Biogeochemical characteristics of soil C, N, P in the tidal wetlands of the Yellow River Delta. Marine Science, 2015, 39(1): 84-92. [36] JIN L, WU Z, YANG C, et al.Microorganism characteristics in decomposition process of rubber tree leaves litter in Hainan Island. Meteorological & Environmental Research, 2016, 7(6): 22-28. |