JOURNAL OF NATURAL RESOURCES ›› 2016, Vol. 31 ›› Issue (4): 658-671.doi: 10.11849/zrzyxb.20150345

• Resource Evaluation • Previous Articles     Next Articles

Study on Temporal and Spatial Variation of the Dry-wet and Its Influence Factors in Xinjiang Based on Aridity Index

ZHANG Yan-long, LIU Pu-xing   

  1. College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
  • Received:2015-04-03 Revised:2015-09-24 Online:2016-04-28 Published:2016-04-28
  • Supported by:

    National Natural Science Foundation of China, No.40961035; Science and Technology Project of Gansu Province, No.0803RJZA094; Provincial Key Disciplines of Natural Geography Project of Gansu


Based on the collected climate data regarding daily temperature, precipitation, wind speed, sunshine hour as well as related humidity from 53 meteorological stations, and atmospheric circulation index and sunspot in the study region during 1961-2013, evapotrans-piration (ET0) was estimated by applying Penman-Monteith model. Additionally, Inverse Dis-tance Weighted was applied to comprehensively investigate the temporal-spatial variations of ET0, precipitation and aridity index (AI). The abrupt change and period of ET0, precipitation and AI were characterized using comprehensive time series analysis conducted with moving M-K test and Morlet wavelet. Principal component analysis was employed to analyze the factors that influenced the AI. The results showed that: In recent 53 years, precipitation displayed an increasing trend (8.81 mm/10 a), ET0 and AI presented decreasing trend on the whole at the rates of -28.73 mm/10 a and -0.05/10 a, suggesting that the regional climate trended to be wetter in Xinjiang. As for annual distribution, ET0 and precipitation both exhibited unimodal distributions with peaks appeared in August (137.12 mm) and July (24.58 mm), the maximum in September (0.9), and the minimum in January (0.46). Spatially, the ET0 in southern Xinjiang was greater than that in northern Xinjiang, and that of east was greater than that of west; the precipitation in northern was greater than that in southern. The spatial patterns of AI and precipitation were opposite. Overall, the AI in south was greater than that in north, and that in basin was greater than that in the mountains. The M-K trend of AI was between 0 - -0.02/a, and the decreasing trend of AI in north was more extraordinary than that in south, consistent with the facts that the north of Xinjiang was wetter than the south. The abrupt changes for ET0 and precipitation occurred in 1987 and 1981, respectively. There were two distinct point mutations of AI in 1981 and 1984. Morlet wavelet and its power spectrum analysis showed: Precipitation exhibited periods of 6.49 a, 5.71 a and 4.35 a (p≤0.05), ET0 showed the period of 21.37 a (p≤0.2), and AI had periods of 6.62 a and 3.45 a (p≤0.1), indicating that it was related to atmospheric circumfluence and El Niño events to some extent. Principal component analysis demonstrated: AI was positively correlated with temperature and negatively correlated with precipitation, and the southern part of Xinjiang was more sensitive to precipitation than the northern part. Correlation coefficient between AI and WYMI, and ENSO were 0.46 (p≤0.05) and -0.34 (p≤0.05), respectively.

Key words: aridity index, Mann-Kendall trend, Morlet wavelet analysis, principal component analysis, Xinjiang

CLC Number: 

  • P426.616