
中国光伏发电的时空分布、竞争格局及减排效益
Spatio-temporal distribution, competitive development and emission reduction of China's photovoltaic power generation
随着中国碳达峰、碳中和目标的提出,光伏发电逐渐成为推动低碳转型的重要途径。通过开展中国光伏发电的时空分布、竞争格局及减排效益研究,本文力求为中国“双碳”目标的落实、光伏产业的可持续发展提供量化支撑及政策建议,得出主要结论如下:(1)2012—2020年,光伏装机总量从624.8万kW增长到25317.0万kW,以集中式电站为主导;(2)山东、江苏、安徽、河南、山西等地区呈现高—高自相关特征,贵州等地区呈现高—低自相关特征;(3)电力消费量、碳排放量、科研投入为装机量增加的正向驱动因素,科技投入对相邻省份的装机量增加同样具有正向驱动效应;(4)中国现有光伏装机的年均减排效益约为2.0亿t,到2030年累计可以达到19.2亿t,对碳达峰、碳中和目标的落实具有重要推动作用。
Since China's carbon peak and carbon neutrality goals were put forward, photovoltaic power generation has gradually become one of the important fields to accelerate low carbon transition. Through the analysis of spatio-temporal distribution, competitive development and emission reduction of China's photovoltaic power generation, the main conclusions can be drawn as follows: (1) From 2012 to 2020, the total installed photovoltaic capacities increased from 6.25 million kW to 253.17 million kW, dominated by centralized power stations. (2) Regions including Shandong, Jiangsu, Anhui, Henan, and Shanxi showed a high-high autocorrelation, while regions such as Guizhou showed a high-low autocorrelation. (3) Electricity consumption, carbon emissions, and R&D investment were the positive driving factors for the growth of photovoltaic installed capacities, and R&D investment had a positive impact on the growth of photovoltaic installed capacities in neighboring provinces. (4) The potential emission reduction benefits per year of China's existing photovoltaic installations could almost reach 2.0E+08 tons and the accumulated emission reduction benefits could reach 19.2E+08 tons by 2030, revealing significant emission reduction potentials for promoting the achievement of carbon peak and carbon neutrality goals.
光伏发电 / 时空分布 / 竞争格局 / 减排效益 {{custom_keyword}} /
photovoltaic power generation / spatio-temporal distribution / competitive development / emission reduction {{custom_keyword}} /
表1 变量描述与数据来源Table 1 Variable description and data sources |
变量 | 指标 | 单位 | 数据来源 | 最大值 | 最小值 | 标准差 |
---|---|---|---|---|---|---|
Y | 光伏装机容量 | 万kWh | 中国能源局 | 2275 | 0 | 439.8 |
X1 | 人均GDP(PGDP) | 元 | 《中国统计年鉴》 | 167640 | 19786 | 27804.8 |
X2 | 碳排放量(CO2) | 万t | CEADs数据库、《中国统计年鉴》 | 912.2 | 37.3 | 204 |
X3 | 电力消费量(ECI) | 亿kWh | 《中国统计年鉴》《中国能源年鉴》 | 6939.8 | 27.8 | 1482.6 |
X4 | 火电装机容量(TIC) | 万kW | 《中国电力统计年鉴》 | 11135 | 12.0 | 13670.7 |
X5 | 科技投入(R&D) | 亿元 | 《中国科技统计年鉴》 | 871144.7 | 1.8 | 55401.1 |
表2 中国区域光照强度等级分类Table 2 Solar intensity classification levels in China |
等级 | 区域 |
---|---|
第一层级 | 宁夏,青海海西,嘉峪关,武威,张掖,酒泉,敦煌,甘肃金昌,哈密,塔城,阿勒泰,克拉玛依,内蒙古(除赤峰、通辽、兴安盟、呼伦贝尔) |
第二层级 | 北京,天津,黑龙江,吉林,辽宁,四川,云南,赤峰,通辽,兴安盟,呼伦贝尔,承德,张家口,唐山,秦皇岛,大同,朔州,忻州,阳泉,榆林,延安,青海,甘肃,新疆第一层级以外的地区 |
第三层级 | 除第一层级和第二层级以外的地区 |
注:数据来源于国家发展改革委员会、国家能源局等。 |
表3 中国区域电网划分及碳减排因子Table 3 China's regional grid division and carbon emission reduction factors |
电网 | 覆盖省(市、自治区) | 碳减排因子/(t CO2/MWh) |
---|---|---|
华北电网 | 北京,天津,河北,山西,山东,内蒙古 | 0.7119 |
东北电网 | 辽宁,吉林,黑龙江 | 0.6613 |
华东电网 | 上海,江苏,浙江,安徽,福建 | 0.5896 |
华中电网 | 河南,湖北,湖南,江西,四川,重庆 | 0.5721 |
西北电网 | 陕西,甘肃,青海,宁夏,新疆 | 0.6665 |
南方电网 | 广东,广西,云南,贵州,海南 | 0.5089 |
注:数据来源于生态环境部应对气候变化司。 |
表4 空间杜宾模型统计检验Table 4 Statistical tests for Spatial Dubin Model |
变量 | 统计量 | P值 |
---|---|---|
Wald_lag | 117.32 | 0.000 |
Wald_error | 43.25 | 0.000 |
LR_lag | 109.84 | 0.000 |
LR_error | 39.66 | 0.000 |
Hausman | 43.23 | 0.020 |
表5 空间杜宾模型结果Table 5 Spatial Dubin Model results |
解释变量 | SDM | 直接效应 | 间接效应 | 总效应 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
系数 | P值 | 系数 | P值 | 系数 | P值 | 系数 | P值 | ||||
lnPGDP | 0.007** | 0.013 | 0.007** | 0.012 | 0.003*** | 0.000 | 0.010*** | 0.000 | |||
lnCO2 | 1.307* | 0.093 | 1.307* | 0.009 | 0.070 | 0.622 | 1.377** | 0.034 | |||
lnECI | 0.640*** | 0.000 | 0.625*** | 0.000 | 0.021 | 0.166 | 0.646* | 0.087 | |||
lnTIC | -0.966 | 0.317 | -1.003 | 0.350 | -0.013 | 0.744 | -1.016 | 0.406 | |||
lnR&D | 0.346*** | 0.000 | 0.342*** | 0.000 | 1.034* | 0.066 | 1.376 | 0.947 | |||
WlnY | 1.623*** | 0.000 | — | — | — | — | — | — | |||
WlnPGDP | -0.003*** | 0.000 | — | — | — | — | — | — | |||
WlnCO2 | 0.121 | 0.320 | — | — | — | — | — | — | |||
WlnECI | -0.343 | 0.560 | — | — | — | — | — | — | |||
WlnTIC | 0.032 | 0.783 | — | — | — | — | — | — | |||
WlnR&D | 0.579*** | 0.000 | — | — | — | — | — | — |
注:***、** 和 * 分别表示统计量在1%、5%和10%置信水平下显著。 |
[1] |
United Nations Framework Convention on Climate Change, https://unfccc.int/resource/docs/convkp/conveng.pdf.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
2006 IPCC Guidelines for National Greenhouse Gas Inventories, http://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
BP. Statistical review of world energy, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
牟初夫, 王礼茂, 屈秋实, 等. 主要新能源发电替代减排的研究综述. 资源科学, 2017, 39(12): 2323-2334.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
韩梦瑶, 熊焦, 刘卫东. 中国跨境能源贸易及隐含能源流动对比: 以“一带一路”能源合作为例. 自然资源学报, 2020, 35(11): 2674-2686.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
王炳忠, 张富国, 李立贤. 我国的太阳能资源及其计算. 太阳能学报, 1980, (1): 5-13.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
中国能源局. 2019年度全国可再生能源电力发展监测评价报告, 2020.
[China Energy Administration. National renewable energy power development monitoring and evaluation report 2019, 2020.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
王哲, 王飞, 刘力卿, 等. 基于多元回归分析的光伏电站太阳辐射曝辐量模型. 华北电力大学学报, 2011, 38(5): 53-58.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
毛爱涵, 李发祥, 杨思源, 等. 青海省清洁能源发电潜力及价值分析. 资源科学, 2021, 43(1): 104-121.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
王志春, 张新龙, 苑俐, 等. 内蒙古赤峰市太阳能资源评估与开发潜力分析. 沙漠与绿洲气象, 2021, 15(2): 106-111.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
何后裕, 何华琴, 王骞, 等. 考虑碳足迹与交易的分布式光伏发电成本分摊. 电力建设, 2020, 41(6): 85-92.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
何则, 周彦楠, 刘毅. 2050年中国能源消费结构的系统动力学模拟: 基于重点行业的转型情景. 自然资源学报, 2020, 35(11): 2696-2707.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
DOS SANTOS CARSTENS D D,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
董梅, 李芳芳. 低碳省区试点政策的净碳减排效应. 中国人口·资源与环境, 2020, 30(11): 63-74.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
杨学坤. 一带一路战略下中国光伏产品出口策略. 中国人口·资源与环境, 2016, 26(s1): 435-437.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
王海英, 程晓春, 程宏, 等. 现阶段可再生能源消纳政策的解析和思考. 中国电力企业管理, 2020, (25): 54-57.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
梁志峰, 夏俊荣, 孙檬檬, 等. 数据驱动的配电网分布式光伏承载力评估技术研究. 电网技术, 2020, 44(7): 9.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
张凌浩, 张明, 嵇文路, 等. 基于灰色关联理论和BP神经网络的分布式光伏电站运维数据虚拟采集方法. 电力建设, 2021, 42(1): 125-131.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
吴景辉, 张戈, 王耕. 能源富集区贸易隐含碳及隐含SO2排放转移: 以山西省为例. 自然资源学报, 2020, 35(6): 1445-1459.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
张小丽, 崔学勤, 王克, 等. 中国煤电锁定碳排放及其对减排目标的影响. 中国人口·资源与环境, 2020, 30(8): 31-41.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
韩梦瑶, 刘卫东, 谢漪甜, 等. 中国省域碳排放的区域差异及脱钩趋势演变. 资源科学, 2021, 43(4): 710-721.
一个国家或地区碳排放目标的实现取决于经济增速与碳排放降速的相对关系,而碳排放与经济发展的相对脱钩是中国碳排放目标实现的重要保障。本文结合泰尔指数和Tapio模型,刻画中国各省份2005—2017年碳排放与经济发展的相对关系,研究碳排放的区域差异及脱钩指数的演变趋势,主要结论如下:①中国各地区的碳排放总量与经济发展均呈现了增长趋势,碳排放强度大多呈现了降低趋势;②尽管中国各省份经济发展的区域差距逐年缩小,但中国各省份的碳排放差距、尤其是区域间碳排放差距逐年扩大;③中国大多数地区的碳排放与经济增长经历了扩张负脱钩、扩张挂钩到弱脱钩的变化历程,但部分省份的脱钩稳定性相对较低;④上海、天津、重庆、浙江、山东等不断趋近强脱钩状态,但少数地区仍在扩张挂钩和扩张负脱钩状态中交替。本文结论有助于辨识中国不同地区碳排放与经济发展的相对关系,落实不同碳排放及经济发展水平下可行的低碳发展策略,进而为中国碳达峰与碳中和目标的实现提供借鉴参考。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
向宁, 王礼茂, 屈秋实, 等. 基于生命周期评估的海、陆风电系统排放对比. 资源科学, 2021, 43(4): 745-755.
为了应对气候变化、资源短缺与环境污染问题,各国都在积极开发清洁能源,风能作为可再生的清洁能源,得到了世界各国的高度重视。在实现2030年碳排放达峰的目标约束下,近年来,中国风电规模也处于快速增长的阶段。风力发电过程虽然不会排放温室气体和污染物,但从产业的生命周期角度分析,在设备制造、运输、安装、运行、废弃等环节也会带来一定量的温室气体和污染物的排放,因此风力发电并不是零排放的能源。本文利用全生命周期评价方法对比研究了100 MW海上和陆上风电系统的全生命周期的排放情况,重点分析了不同功率风机的风电场的全生命周期温室气体排放情况,并分析了一般污染物对于环境的影响。研究结果表明:①海上风电场全生命周期温室气体排放量平均为1.49 g CO<sub>2</sub>/kWh,陆上风电场平均排放量3.62 g CO<sub>2</sub>/kWh,均远远小于传统火力发电,比较而言,在减少温室气体排放方面,海上风电系统更具优势;②在全生命周期污染物排放方面,海上风电场全生命周期污染物的排放量要小于陆上风电场,且具有更短的能源回报时间,经济效益更高,对环境更友好;③在全生命周期中,风机的生产过程所产生的温室气体排放占到总温室气体排放的40%以上,同时风机生产所排放的污染物对于环境的负面影响最大,约占整个生命周期影响的50%以上;④配备更大功率的风机将有助于减少温室气体和污染物的排放。研究结果可为减少环境污染、实现碳排放达峰目标提供参考依据。
[
In order to cope with climate change, resource shortage, and environmental pollution, all countries are actively developing clean energy. Wind energy is one of the renewable clean energy sources, which has been vigorously developed by many countries in the world. In recent years, in order to meet the requirement of carbon emission peak in 2030, wind power in China is also rapidly developing. Although the process of wind power generation will not emit greenhouse gases and pollutants, from the perspective of the life cycle of the industry, it still produces a certain amount of greenhouse gases and pollutants in equipment manufacturing, transportation, installation, operation, waste disposal, and other links, so wind power is not zero emission energy. In this study, the life cycle assessment method was used to compare the life cycle emissions of 100 MW offshore and onshore wind power systems. The key point is to analyze the greenhouse gas emissions of wind farms equipped with different power wind turbines in the whole life cycle and the impact of emissions on the environment. The results show that: the average life cycle carbon emission of offshore wind farms is 1.49 g CO2/kWh, and that of onshore wind farms is 3.62 g CO2/kWh. The average life cycle carbon emission of both wind farms are far less than that of traditional thermal power generation. In terms of reducing greenhouse gas emissions, the offshore wind power system has more advantages; The emission of offshore wind farms in the whole life cycle is less than that of onshore wind farms, and the offshore system has shorter energy return time and is more environmentally friendly; In the whole life cycle, the greenhouse gas emissions produced by the production of wind turbines account for more than 40% of the total greenhouse gases emissions. At the same time, the pollutants from the production of wind turbines have the greatest negative impact on the environment, accounting for more than 50% of the entire life cycle impact; By comparing the life cycle emissions of offshore and onshore wind power systems with different power wind turbines, more powerful wind turbines will help reduce greenhouse gas and pollutant emissions. This study compares the life cycle emissions of offshore and onshore wind farm construction, and provides a reference for China to reduce environmental pollution and achieve the goal of carbon emissions to peak. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
袁潮清, 朱玉欣. 基于动态热点的中国光伏产业政策演化研究. 科技管理研究, 2020, (14): 43-53.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
韩梦瑶, 刘卫东, 刘慧. 中国跨境风电项目的建设模式、梯度转移及减排潜力研究: 以中巴经济走廊优先项目为例. 世界地理研究, 2021, 30(3): 490-500.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
汪鹏, 王翘楚, 韩茹茹, 等. 全球关键金属-低碳能源关联研究综述及其启示. 资源科学, 2021, 43(4): 669-681.
在“碳中和”背景下,学术界日益清晰地认识到“关键金属”与低碳能源技术之间存在着紧密的相互依赖关系。为提升国际社会对“关键金属-低碳能源”关联研究的认识,本文整理了该领域2000—2020年发表的200多篇文献资料,综述了该领域研究的发展历程与最新进展,阐述了主要的科学发现:①能源低碳转型将驱动多种关键金属的开采量和贸易量持续快速增长,加剧关键金属供应国的生态环境污染,加深世界各国对关键金属资源的依赖和争夺;②部分关键金属存在储量不足、贸易供应链脆弱、地理分布不均、环境污染严重等风险,并将对全球低碳转型产生约束,进而重塑全球能源地缘政治格局;③中国作为多种关键金属的生产、消费和贸易大国,为推动全球能源低碳转型付出了巨大的资源和环境代价,且自身同样面临关键金属供应短缺的风险。建议在“碳达峰”与“碳中和”目标的背景下,中国应深化金属-能源关联研究,开展金属-能源协同管理,研判关键金属对中国发展低碳技术的支撑和限制作用,警惕能源系统低碳转型带来的新型地缘政治风险。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |