自然资源学报 ›› 2021, Vol. 36 ›› Issue (12): 3261-3270.doi: 10.31497/zrzyxb.20211218
• 其他研究论文 • 上一篇
周葆华1(), 胡睿鑫1, 赵宽1(
), 万昕1, 汪瑜1, 梁玉辉2, 汤金来2
收稿日期:
2020-08-16
修回日期:
2020-11-25
出版日期:
2021-12-28
发布日期:
2022-02-28
通讯作者:
赵宽(1986- ),男,安徽池州人,博士,副教授,研究方向为环境生态毒理学。E-mail: zhaokuan@aqnu.edu.cn作者简介:
周葆华(1963- ),女,安徽安庆人,教授,研究方向为生态环境调查与风险评估。E-mail: 1979748551@qq.com
基金资助:
ZHOU Bao-hua1(), HU Rui-xin1, ZHAO Kuan1(
), WAN Xin1, WANG Yu1, LIANG Yu-hui2, TANG Jin-lai2
Received:
2020-08-16
Revised:
2020-11-25
Online:
2021-12-28
Published:
2022-02-28
摘要:
选取2.5 km×2.5 km网格布点法,在皖江经济带A、B、C三地分别采集土壤样品35个、34个、106个,利用ICP-AES分析测定Cd含量特征,运用单项污染指数法、地累积指数法和潜在生态风险指数法对三地土壤Cd污染状况进行生态风险评价。结果表明:(1)A、B、C三地土壤的Cd含量的算术平均值分别为0.40 mg?kg -1、0.66 mg?kg -1、0.84 mg?kg -1,均高于江淮流域Cd含量土壤背景值;(2)三地土壤pH在5.06~7.58之间,整体上处于酸性和弱碱性之间,pH小于7.0的样品167个,占比95.43%;(3)研究区三个地块土壤Cd污染特征存在明显的空间分异,低污染区在空间上呈带状分布,高污染区在空间上呈岛状分布,污染区分布面积C地>B地>A地。(4)三地土壤环境均受重金属Cd污染的影响,存在生态安全风险,风险大小为C地>B地>A地,风险程度均为潜在生态风险高于地累积生态风险高于单项污染生态风险。本区域土壤农业安全利用需要加以重视并进行分类管控。
周葆华, 胡睿鑫, 赵宽, 万昕, 汪瑜, 梁玉辉, 汤金来. 皖江经济带土壤Cd空间分布特征与生态风险评价[J]. 自然资源学报, 2021, 36(12): 3261-3270.
ZHOU Bao-hua, HU Rui-xin, ZHAO Kuan, WAN Xin, WANG Yu, LIANG Yu-hui, TANG Jin-lai. Spatial distribution characteristic of Cd in soils and its ecological risk assessment in the economic belt of Yangtze River in Anhui[J]. JOURNAL OF NATURAL RESOURCES, 2021, 36(12): 3261-3270.
表1
研究区土壤重金属Cd全量的统计特征
pH | 样品数/个 | 最大值/(mg∙kg-1) | 最小值/(mg∙kg-1) | 平均值/(mg∙kg-1) | 标准差 | 变异系数/% | |
---|---|---|---|---|---|---|---|
A | (5.5, 6.5] | 20 | 0.99 | 0.05 | 0.35 | 0.24 | 68.43 |
(6.5, 7.5] | 15 | 0.88 | 0.15 | 0.46 | 0.22 | 47.05 | |
总体情况 | 5.99~6.98 | 35 | 0.99 | 0.05 | 0.40 | 0.23 | 58.78 |
B | ≤5.5 | 5 | 1.52 | 0.14 | 0.54 | 0.56 | 104.26 |
(5.5, 6.5] | 21 | 1.25 | 0.15 | 0.61 | 0.31 | 51.73 | |
(6.5, 7.5] | 8 | 2.06 | 0.28 | 0.86 | 0.54 | 62.53 | |
总体情况 | 5.06~7.36 | 34 | 2.06 | 0.14 | 0.66 | 0.42 | 63.43 |
C | ≤5.5 | 6 | 2.31 | 0.35 | 1.07 | 0.69 | 63.92 |
(5.5, 6.5] | 56 | 6.28 | 0.10 | 0.79 | 0.95 | 120.16 | |
(6.5, 7.5] | 43 | 3.96 | 0.19 | 0.89 | 0.80 | 89.73 | |
>7.5 | 1 | 0.54 | 0.54 | 0.54 | 0 | 0 | |
总体情况 | 5.26~7.58 | 106 | 6.28 | 0.10 | 0.84 | 0.87 | 103.01 |
表2
研究区土壤Cd单项污染指数
区域 | pH | 样本数/个 | P值范围 | P平均值 | 样本超标数/个 (超标率/%) | |||
---|---|---|---|---|---|---|---|---|
无污染 | 轻污染 | 中度污染 | 重度污染 | |||||
A | (5.5, 6.5] | 20 | 0.11~2.48 | 0.87 | 14(70.00) | 5(25.00) | 1(5.00) | 0(0) |
(6.5, 7.5] | 15 | 0.25~1.46 | 0.77 | 12(80.00) | 3(20.00) | 0(0) | 0(0) | |
区域总体评价 | 5.99~6.98 | 35 | 0.11~2.48 | 0.82 | 26(74.28) | 8(22.86) | 1(2.86) | 0(0) |
B | ≤5.5 | 5 | 0.48~5.06 | 1.81 | 3(60.00) | 1(20.00) | 0(0) | 1(20.00) |
(5.5, 6.5] | 21 | 0.37~3.13 | 1.51 | 7(33.33) | 9(42.86) | 4(19.05) | 1(4.76) | |
(6.5, 7.5] | 8 | 0.46~3.43 | 1.43 | 3(37.50) | 4(50.00) | 0(0) | 1(12.50) | |
区域总体评价 | 5.06~7.36 | 34 | 0.37~5.06 | 1.54 | 13(38.23) | 14(41.18) | 4(11.77) | 3(8.82) |
C | ≤5.5 | 6 | 1.16~7.69 | 3.58 | 0(0) | 1(16.67) | 2(33.33) | 3(50.00) |
(5.5, 6.5] | 56 | 0.24~15.70 | 1.98 | 17(30.36) | 22(39.28) | 10(17.86) | 7(12.50) | |
(6.5, 7.5] | 43 | 0.32~6.61 | 1.48 | 24(55.81) | 6(13.95) | 10(23.26) | 3(6.98) | |
>7.5 | 1 | 0.67 | 0.67 | 1(100) | 0(0) | 0(0) | 0(0) | |
区域总体评价 | 5.26~7.58 | 106 | 0.24~15.70 | 1.85 | 42(39.62) | 29(27.36) | 22(20.76) | 13(12.26) |
表3
研究区土壤Cd地累积指数
区域 | pH | 样本数/个 | Igeo 范围 | Igeo 平均值 | 样本超标数/个 (超标率/%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
无污染 | 轻污染 | 偏中度污染 | 中度污染 | 偏重污染 | 重污染 | 严重污染 | |||||
A | (5.5, 6.5] | 20 | -1.79~2.67 | 0.76 | 4(20.00) | 6(30.00) | 8(40.00) | 2(10.00) | 0(0) | 0(0) | 0(0) |
(6.5, 7.5] | 15 | -0.06~2.49 | 1.41 | 1(6.67) | 3(20.00) | 8(53.33) | 3(20.00) | 0(0) | 0(0) | 0(0) | |
总体评价 | 5.99~6.98 | 35 | -1.79~2.67 | 1.35 | 5(14.29) | 9(25.71) | 16(45.71) | 5(14.29) | 0(0) | 0(0) | 0(0) |
B | ≤5.5 | 5 | -0.12~3.28 | 1.28 | 1(20.00) | 2(40.00) | 1(20.00) | 0(0) | 1(20.00) | 0(0) | 0(0) |
(5.5, 6.5] | 21 | -0.07~3.00 | 1.74 | 1(4.76) | 3(14.29) | 7(33.33) | 9(42.86) | 1(4.76) | 0(0) | 0(0) | |
(6.5, 7.5] | 8 | 0.82~3.72 | 2.25 | 0(0) | 1(12.50) | 2(25.00) | 4(50.00) | 1(12.50) | 0(0) | 0(0) | |
总体评价 | 5.06~7.36 | 34 | -0.12~3.72 | 2.07 | 2(5.88) | 6(17.65) | 10(29.41) | 13(38.24) | 3(8.82) | 0(0) | 0(0) |
C | ≤5.5 | 6 | 1.16~3.89 | 2.54 | 0(0) | 0(0) | 1(16.67) | 3(50.00) | 2(33.33) | 0(0) | 0(0) |
(5.5, 6.5] | 56 | -0.67~5.33 | 1.86 | 2(3.57) | 7(12.50) | 26(46.43) | 14(25.00) | 3(5.36) | 3(5.36) | 1(1.78) | |
(6.5, 7.5] | 43 | 0.29~4.67 | 2.10 | 0(0) | 5(11.63) | 19(44.19) | 6(13.95) | 11(25.58) | 2(4.65) | 0(0) | |
>7.5 | 1 | 1.79 | 1.79 | 0(0) | 0(0) | 1(100) | 0(0) | 0(0) | 0(0) | 0(0) | |
总体评价 | 5.26~7.58 | 106 | -0.67~5.33 | 2.43 | 2(1.89) | 12(11.32) | 47(44.34) | 23(21.70) | 16(15.09) | 5(4.72) | 1(0.94) |
表4
研究区土壤Cd潜在生态风险指数
pH | 样本数/个 | 样本超标数/个 (超标率/%) | |||||||
---|---|---|---|---|---|---|---|---|---|
低 | 中等 | 中高等 | 高等 | 极高 | |||||
A | (5.5, 6.5] | 20 | 13.04~286.01 | 100.73 | 3(15.00) | 7(35.00) | 6(30.00) | 4(20.00) | 0(0) |
(6.5, 7.5] | 15 | 42.98~253.27 | 133.39 | 0(0) | 3(20.00) | 9(60.00) | 3(20.00) | 0(0) | |
总体评价 | 5.99~6.98 | 35 | 13.04~286.01 | 114.73 | 3(8.57) | 10(28.57) | 15(42.86) | 7(20.00) | 0(0) |
B | ≤5.5 | 5 | 41.48~438.39 | 156.25 | 0(0) | 3(60.00) | 1(20.00) | 0(0) | 1(20.00) |
(5.5, 6.5] | 21 | 42.94~360.69 | 174.53 | 0(0) | 3(14.29) | 7(33.33) | 9(42.86) | 2(9.52) | |
(6.5, 7.5] | 8 | 79.38~594.20 | 247.82 | 0(0) | 1(12.50) | 2(25.00) | 4(50.00) | 1(12.50) | |
总体评价 | 5.06~7.36 | 34 | 41.48~594.20 | 189.09 | 0(0) | 7(20.59) | 10(29.41) | 13(38.24) | 4(11.76) |
C | ≤5.5 | 6 | 100.33~665.25 | 309.85 | 0(0) | 0(0) | 1(16.67) | 3(50.00) | 2(33.33) |
(5.5, 6.5] | 56 | 28.21~1811.22 | 228.05 | 1(1.78) | 5(8.93) | 29(51.79) | 14(25.00) | 7(12.50) | |
(6.5, 7.5] | 43 | 55.10~1143.81 | 255.81 | 0(0) | 4(9.30) | 18(41.86) | 7(16.28) | 14(32.56) | |
>7.5 | 1 | 155.39 | 155.39 | 0(0) | 0(0) | 1(100) | 0(0) | 0(0) | |
总体评价 | 5.26~7.58 | 106 | 28.21~1811.22 | 243.26 | 1(0.94) | 9(8.49) | 49(46.23) | 24(22.64) | 23(21.70) |
[1] | KUMAR V, SHARMA A, KAUR P, et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 2019,216(2):449-462. |
[2] | 吴永红, 靳少非. 基于CiteSpace的重金属污染土壤修复研究文献计量分析. 农业环境科学学报, 2020,39(3):454-461. |
[ WU Y H, JIN S F. Bibliometric analysis of the repair of heavy metal-contaminated soil based on CiteSpace. Journal of Agro-Environment Science, 2020,39(3):454-461.] | |
[3] | BARSOVA N, YAKIMENKO O, TOLPESHTA I, et al. Current state and dynamics of heavy metal soil pollution in Russian Federation-a review. Environmental Pollution, 2019,249(6):200-207. |
[4] | 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析. 农业环境科学学报, 2017,36(9):1689-1692. |
[ CHEN N C, ZHENG Y J, HE X F, et al Analysis of the bulletin of national soil pollution survey. Journal of Agro-Environment Science, 2017,36(9):1689-1692.] | |
[5] | 李宏薇, 尚二萍, 张红旗, 等. 耕地土壤重金属污染时空变异对比: 以黄淮海平原和长江中游及江淮地区为例. 中国环境科学, 2018,38(9):3464-3473. |
[ LI H W, SHANG E P, ZHANG H Q, et al. Comparative research on spatio-temporal variability of heavy metal pollution in cultivated soils: A case study of Huang-Huai-Hai Plain and middle reaches of the Yangtze River and Jianghuai Region. China Environmental Science, 2018,38(9):3464-3473.] | |
[6] | 雷国建, 陈志良, 刘千钧, 等. 广州郊区土壤重金属污染程度及潜在生态危害评价. 中国环境科学, 2013,33(s1):49-53. |
[ LEI G J, CHEN Z L, LIU Q J, et al. The assessments of polluted degree and potential ecological hazards of heavy metals in suburban soil of Guangzhou city. China Environmental Science, 2013,33(s1):49-53.] | |
[7] | 陈泗进, 何立环, 王业耀. 湖南省桂阳县某铅锌矿周边农田土壤重金属污染及生态风险评价. 环境化学, 2015,34(3):591-592. |
[ CHEN S J, HE L H, WANG Y Y. Heavy metal pollution and ecological risk assessment of farmland soil around a lead-zinc mine in Guiyang county, Hunan province. Environmental Chemistry, 2015,34(3):591-592.] | |
[8] | 陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策. 土壤学报, 2018,55(2):261-272. |
[ CHEN W P, YANG Y, XIE T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China. Acta Pedologica Sinica, 2018,55(2):261-272.] | |
[9] | YU L, CHENG J M, ZHAN J C, et al. Environmental quality and sources of heavy metals in the topsoil based on multivariate statistical analyses: A case study in Laiwu city, Shandong province, China. Natural Hazards, 2016,81(3):1435-1445. |
[10] | 许萌萌, 刘爱风, 师荣光, 等. 天津农田重金属污染特征分析及降雨沥浸影响. 环境科学, 2018,39(3):1095-1101. |
[ XU M M, LIU A F, SHI R G, et al. Characteristics of heavy metals pollution of farmland and the leaching effect of rainfall in Tianjin. Environmental Science, 2018,39(3):1095-1101.] | |
[11] | ABDELHAFEZ A A, LI J H. Environmental monitoring of heavy metal status and human health risk assessment in the agricultural soils of the Jinxi River Area, China. Human and Ecological Risk Assessment, 2015,21(4):952-971. |
[12] | 殷汉琴, 陈富荣, 陈兴仁, 等. 铜陵市及其周边地区土壤重金属元素污染评价. 安全与环境学报, 2010,18(3):98-102. |
[ YIN H Q, CHEN F R, CHEN X R, et al. Assessment of heavy metal pollutions to the soils in Tongling city, Anhui. Journal of Safety and Environment, 2010,18(3):98-102.] | |
[13] | 杨西飞. 铜陵矿区农田土壤及水稻的重金属污染现状研究. 合肥: 合肥工业大学, 2007. |
[ YANG X F. A current research on heavy metal pollution to the soil and rice in the farmland soil in Tongling mining district. Hefei: Hefei University of Technology, 2007.] | |
[14] | 李法松, 韩铖, 林大松, 等. 安庆沿江湖泊及长江安庆段沉积物重金属污染特征及生态风险评价. 农业环境科学学报, 2017,36(3):574-582. |
[ LI F S, HAN C, LIN D S, et al. Pollution characteristics and ecological risk assessment of heavy metals in the sediments from lakes of Anqing city and Anqing section of Yangtze River. Journal of Agro-Environment Science, 2017,36(3):574-582.] | |
[15] | 王茜, 张光辉, 田言亮, 等. 皖江经济区基本农田地球化学特征及成因. 地质学报, 2016,90(8):1988-1997. |
[ WANG Q, ZHANG G H, TIAN Y L, et al. The character and influencing factor of geochemical distribution in basic farmland of economic zone along Yangtze River in Anhui. Acta Geologica Sinica, 2016,90(8):1988-1997.] | |
[16] | 赵传冬, 陈富荣, 陈兴仁, 等. 长江流域沿江镉异常源追踪与定量评估的方法技术研究: 以长江流域安徽段为例. 地学前缘, 2008,15(5):179-193. |
[ ZHAO C D, CHEN F R, CHEN X R, et al. A methodology of tracking sources of cadmium anomalies and their quantitative estimation in the Yangtze River Basin. Earth Science Frontiers, 2008,15(5):179-193.] | |
[17] | 池源. 安徽铜陵地区土壤和河流沉积物重金属分布特征与污染评价. 南京: 南京大学, 2013. |
[ CHI Y. Distribution characteristics and pollution evaluation of soil and river sediment heavy metals in Tongling, Anhui. Nanjing: Nanjing University, 2013.] | |
[18] | 钟雪梅, 夏德尚, 宋波, 等. 广西土壤镉含量状况与风险评估研究进展. 自然资源学报, 2017,32(7):1256-1270. |
[ ZHONG X M, XIA D S, SONG B, et al. Review on soil cadmium study and risk assessment in Guangxi. Journal of Natural Resources, 2017,32(7):1256-1270.] | |
[19] | 谢蓉蓉, 吴如林, 唐晨, 等. 互花米草入侵对河口湿地沉积物重金属累积效应. 自然资源学报, 2020,35(5):1238-1249. |
[ XIE R R, WU R L, TANG C, et al. Heavy metal accumulation affected by Spartina alterniflora invasion in estuarine wetland sediments. Journal of Natural Resources, 2020,35(5):1238-1249.] | |
[20] | HAKANSON L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 1980,14(8):975-1001. |
[21] | 吴新民, 潘根兴. 影响城市土壤重金属污染因子的关联度分析. 土壤学报, 2003,40(6):921-929. |
[ WU X M, PAN G X. The correlation analysis between the content of heavy metals and the factors influencing the pollution of heavy metals in urban soils in Nanjing city. Acta Pedologica Sinica, 2003,40(6):921-928.] | |
[22] | 杨元根, PATERSON E, CANPBELLC. 城市土壤中重金属元素的积累及其微生物效应. 环境科学, 2001,22(3):44-48. |
[ YANG Y G, PATERSON E, CANPBELLC. Accumulation of heavy metals in urban soils and impact on microorganisms. Environmental Science, 2001,22(3):44-48.] | |
[23] | IDASZKIN Y L, CAROL E, ALVAREZ M D P. Mechanism of removal and retention of heavy metals from the acid mine drainage to coastal wetland in the Patagonian marsh. Chemosphere, 2017,183(9):361-370. |
[24] | 隆茜, 张经. 陆架区沉积物中重金属研究的基本方法及其应用. 海洋湖沼通报, 2002,3(3):25-35. |
[ LONG Q, ZHANG J. The method of heavy metals study in shelf sediments and its application. Transactions of Oceanology and Limnology, 2002,3(3):25-35.] | |
[25] | WIESE S B O, MACLEOD C L, LESTER J N. A recent history of metal accumulation in the sediments of the Thames Estuary, United Kingdom. Estuaries, 1997,20(3):483-493. |
[26] | 李宇庆, 陈玲, 仇雁翎, 等. 上海化学工业区土壤重金属元素形态分析. 生态环境, 2004,13(2):154-155. |
[ LI Y Q, CHEN L, QIU Y L, et al. Speciation of heavy metals in soil from Shanghai Chemical Industry Park. Ecology and Environmental, 2004,13(2):154-155.] |
[1] | 韩璟, 潘子纯, 卢新海. 东南亚地区中国海外耕地投资项目的空间分布及影响因素分析[J]. 自然资源学报, 2021, 36(6): 1521-1534. |
[2] | 陈凡, 郭剑, 栗欣如, 李建平. 农业产业化经营项目空间分布及驱动因素分析——以京津冀地区为例[J]. 自然资源学报, 2021, 36(2): 513-524. |
[3] | 邹建琴, 明庆忠, 刘安乐, 郑伯铭, 史鹏飞, 骆登山. 中国红色旅游经典景点空间分布格局及其影响因素异质性[J]. 自然资源学报, 2021, 36(11): 2748-2762. |
[4] | 刘合林, 聂晶鑫. 2006—2018年中国省级以上开发区的空间分布特征变化[J]. 自然资源学报, 2020, 35(9): 2229-2240. |
[5] | 仲佳, 于慧, 刘邵权. 张家口市排污工业点源空间分布格局[J]. 自然资源学报, 2020, 35(6): 1402-1415. |
[6] | 王洁, 摆万奇, 田国行. 土地利用生态风险评价研究进展[J]. 自然资源学报, 2020, 35(3): 576-585. |
[7] | 方叶林, 黄震方, 李经龙, 王芳. 中国特色小镇的空间分布及其产业特征[J]. 自然资源学报, 2019, 34(6): 1273-1284. |
[8] | 厉彦玲, 赵庚星. 黄河三角洲典型地区耕地土壤养分空间预测[J]. 自然资源学报, 2018, 33(3): 489-503. |
[9] | 张萌萌, 刘梦云, 常庆瑞, 刘欢, 张杰. 1985—2015年陕西黄土台塬表层土壤有机碳空间分布[J]. 自然资源学报, 2018, 33(11): 2032-2045. |
[10] | 余正军, 田祥利, 陈娅玲. 我国世界遗产特征分析及空间分布原因分析[J]. 自然资源学报, 2015, 30(10): 1762-1773. |
[11] | 王莉雯, 卫亚星. 沈阳市经济发展演变与碳排放效应研究[J]. 自然资源学报, 2014, 29(1): 27-38. |
[12] | 赵岩洁, 李阳兵, 邵景安. 基于土地利用变化的三峡库区小流域生态风险评价——以草堂溪为例[J]. 自然资源学报, 2013, 28(6): 944-956. |
[13] | 王培娟, 张佳华, 谢东辉, 韩丽娟. 1961—2010年我国冬小麦可种植区变化特征[J]. 自然资源学报, 2012, 27(2): 215-224. |
[14] | 李亚飞, 刘高焕. 大香格里拉地区植被空间分布的环境特征[J]. 自然资源学报, 2011, 26(8): 1353-1363. |
[15] | 李亚飞, 刘高焕. 大香格里拉地区植被空间分布的环境特征[J]. 自然资源学报, 2011, 26(8): 1353-1363. |
|