自然资源学报 ›› 2021, Vol. 36 ›› Issue (4): 934-947.doi: 10.31497/zrzyxb.20210410
邓祥征1,2,3(), 蒋思坚1,2,3, 刘冰4, 王泽昊4, 邵卿4
收稿日期:
2019-12-04
修回日期:
2020-03-02
出版日期:
2021-04-28
发布日期:
2021-06-28
作者简介:
邓祥征(1971- ),男,山东日照人,博士,研究员,博士生导师,研究方向为土地科学与自然资源管理、区域环境变化、发展地理学。E-mail: dengxz@igsnrr.ac.cn
基金资助:
DENG Xiang-zheng1,2,3(), JIANG Si-jian1,2,3, LIU Bing4, WANG Ze-hao4, SHAO Qing4
Received:
2019-12-04
Revised:
2020-03-02
Online:
2021-04-28
Published:
2021-06-28
摘要:
为定量评估全球二氧化碳浓度非均匀分布条件下碳排放与升温的关系,采用空间自相关分析与空间联立方程组模型,基于1度、2度与3度空间分辨率的全球二氧化碳浓度,碳排放与近地面气温等格点数据,揭示了2003—2015年全球二氧化碳浓度的空间分布聚集特征并估计了碳排放对升温的影响系数。结果发现:二氧化碳浓度在空间上表现为北半球高浓度值聚集与南半球低浓度值聚集的分布型。利用二氧化碳浓度非均匀分布的参数条件对碳排放与升温影响的估计结果表明,代入二氧化碳浓度非均匀分布这一参数会小幅拉低碳排放对升温影响的估计结果。研究表明,全球二氧化碳浓度非均匀分布是当前评估碳排放升温影响亟待引入的参数;同时由于估计结果的空间尺度效应的存在,相关参数的空间范围与分辨率的选择也需要关注。
邓祥征, 蒋思坚, 刘冰, 王泽昊, 邵卿. 全球二氧化碳浓度非均匀分布条件下碳排放与升温关系的统计分析[J]. 自然资源学报, 2021, 36(4): 934-947.
DENG Xiang-zheng, JIANG Si-jian, LIU Bing, WANG Ze-hao, SHAO Qing. Statistical analysis of the relationship between carbon emissions and temperature rise with the spatially heterogenous distribution of carbon dioxide concentration[J]. JOURNAL OF NATURAL RESOURCES, 2021, 36(4): 934-947.
表1
模型指标含义与描述性统计
变量 | 样本数/个 | 说明及单位 | 平均值 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|---|
CO2 | 219193 | 陆地二氧化碳浓度/ppm | 383.63 | 7.68 | 367.87 | 401.32 |
rain | 219193 | 陆地降水量/mm | 60.31 | 62.20 | 0 | 885.05 |
pGDP | 219193 | 人均GDP/(万元/人) | 2.59 | 2.93 | 0 | 19.94 |
POP | 219193 | 人口数/万人 | 28.469 | 108.05 | 0 | 3260.71 |
T | 219193 | 陆地近地面气温/(0.1 ℃) | 91.01 | 147.74 | -277.42 | 316.17 |
E | 219193 | 陆地二氧化碳排放/(t/km2) | 199.42 | 2122.87 | 0 | 176601.60 |
DEM | 219193 | 陆表地海拔高度/km | 0.60 | 0.83 | -0.1575 | 6.21 |
表2
联立方程组模型计量结果
变量 | 模型组一:不考虑CO2浓度 | 模型组二:考虑CO2浓度 | ||||||
---|---|---|---|---|---|---|---|---|
OLS | 2SLS | 3SLS | GSLS | GS2SLS | GS3SLS | |||
dT | lnE | 0.0182*** | 0.191*** | 0.192*** | 0.0158*** | 0.186*** | 0.187*** | |
(0.0030) | (0.0065) | (0.0065) | (0.0030) | (0.0065) | (0.0065) | |||
lnCO2 | 16.95*** | 15.59*** | 15.80*** | |||||
(1.082) | (1.092) | (1.092) | ||||||
WlnCO2 | 0.372*** | 0.268*** | 0.255*** | |||||
(0.0401) | (0.0406) | (0.0406) | ||||||
lnrain | -0.0075 | 0.134*** | 0.0238* | -0.0058 | 0.130*** | 0.0242* | ||
(0.0135) | (0.0143) | (0.0142) | (0.0135) | (0.0143) | (0.0142) | |||
lnrain2 | -0.0003 | 0.0045*** | 0.0025*** | 0.0001 | 0.0041*** | 0.0027*** | ||
(0.0010) | (0.0010) | (0.0010) | (0.0010) | (0.0010) | (0.0010) | |||
Longitude | 0.0011*** | -0.0005* | -0.0004 | 0.001*** | -0.0002** | -0.0004 | ||
(0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002) | |||
Latitude | 0.0032*** | 0.0115*** | 0.0136*** | -0.0019** | 0.0076*** | 0.0097*** | ||
(0.0007) | (0.0007) | (0.0007) | (0.0008) | (0.0009) | (0.0009) | |||
DEM | -0.0628*** | -0.0185 | -0.0107 | -0.0579** | -0.0151 | -0.0133 | ||
(0.0243) | (0.0245) | (0.0245) | (0.0243) | (0.0245) | (0.0245) | |||
常数项 | 0.260*** | 0.582*** | -0.166** | -102.6*** | -93.69*** | -95.59*** | ||
(0.0733) | (0.0747) | (0.0741) | (6.435) | (6.494) | (6.494) | |||
Wald chi2 | 14.0*** | 153.4*** | 1076.4*** | 53.7*** | 152.7*** | 1369.9*** | ||
R2 | 0.040 | 0.039 | 0.039 | 0.021 | 0.021 | 0.020 | ||
lnE | lnT | 96.72*** | 97.33*** | 96.27*** | 96.85*** | |||
(0.495) | (0.494) | (0.496) | (0.494) | |||||
lnCO2 | 3.271*** | 3.181*** | ||||||
(0.738) | (0.738) | |||||||
WlnCO2 | 0.523*** | 0.522*** | ||||||
(0.0293) | (0.0293) | |||||||
lnPOP | 0.0599*** | 0.0588*** | 0.0603*** | 0.0592*** | ||||
(0.0049) | (0.0048) | (0.00486) | (0.00481) | |||||
lnPOP2 | 0.0033*** | 0.0033*** | 0.00334*** | 0.00328*** | ||||
(0.0003) | (0.0003) | (0.0003) | (0.0003) | |||||
变量 | 模型组一:不考虑CO2浓度 | 模型组二:考虑CO2浓度 | ||||||
OLS | 2SLS | 3SLS | GSLS | GS2SLS | GS3SLS | |||
lnE | lnpGDP | 0.858*** | 0.881*** | 0.757*** | 0.773*** | |||
(0.0146) | (0.0145) | (0.0156) | (0.0155) | |||||
lnpGDP2 | 0.0280*** | 0.0292*** | 0.0237*** | 0.0246*** | ||||
(0.0007) | (0.0007) | (0.0007) | (0.0007) | |||||
Longitude | 0.0103*** | 0.0104*** | 0.010*** | 0.010*** | ||||
(0.0002) | (0.0002) | (0.0002) | (0.0002) | |||||
Latitude | 0.0559*** | 0.0563*** | 0.0508*** | 0.0513*** | ||||
(0.0007) | (0.0007) | (0.0008) | (0.0008) | |||||
DEM | 0.535*** | 0.554*** | 0.517*** | 0.534*** | ||||
(0.0186) | (0.0185) | (0.0186) | (0.0185) | |||||
常数项 | -771.4*** | -776.2*** | -790.0*** | -794.2*** | ||||
(3.960) | (3.949) | (5.763) | (5.757) | |||||
Wald chi2 | 9553.6*** | 76419.8*** | 7689.6*** | 76892.8*** | ||||
R2 | 0.275 | 0.275 | 0.276 | 0.276 | ||||
样本量/个 | 202332 | 202332 | 202332 | 202332 | 202332 | 202332 |
[1] | LEDUC M, MATTHEWS H D, DE ELÍA R. Quantifying the limits of a linear temperature response to cumulative CO2 emissions. Journal of Climate, 2015,28(24):9955-9968. |
[2] | [ ZHAO Z C. Five global ocean circulation models to simulate the impact of carbon dioxide increase on climate change. Chinese Journal of Atmospheric Sciences, 1990, (1):118-127.] |
[3] | TETT S F B, STOTT P A, ALLEN M R, et al. Causes of twentieth-century temperature change near the Earth's surface. Nature, 1999,399(6736):569. |
[4] |
CROWLEY T J. Causes of climate change over the past 1000 years. Science, 2000,289(5477):270-277.
doi: 10.1126/science.289.5477.270 pmid: 10894770 |
[5] | STERN D I, KAUFMANN R K. Anthropogenic and natural causes of climate change. Climatic Change, 2014,122(1-2):257-269. |
[6] | [ ZHAO J C, ZHONG Z Q, LU H L, et al. Urban residential CO2 emissions and its determinants: A case study of central plains economic region. Journal of Natural Resources, 2017,32(12):2100-2114.] |
[7] | [ SUN N, LI L S. Study of the impact resulting from temperature variance on the Nanjing industry economy on the basis. Meteorological Monthly, 2009,35(10):90-96.] |
[8] | [ LIU Y, LYU Y K, ZHOU M F. Analysis on the influence factors of computing CO2 Emission by input-output method. China Population, Resources and Environment, 2015,25(9):21-28.] |
[9] |
AZAM M, KHAN A Q, ABDULLAH H B, et al. The impact of CO2 emissions on economic growth: Evidence from selected higher CO2 emissions economies. Environmental Science and Pollution Research, 2016,23(7):6376-6389.
pmid: 26620862 |
[10] | KASMAN A, DUMAN Y S. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Economic Modelling, 2015,44:97-103. |
[11] | RAUPACH M R, DAVIS S J, PETERS G P, et al. Sharing a quota on cumulative carbon emissions. Nature Climate Change, 2014,4(10):873-879. |
[12] | [ LIU L N, QU J S, HUANG Y S, et al. Analyze on the spatial-temporal pattern and influence factors of Chinas per capita household carbon emissions. Journal of Natural Resources, 2016,31(8):1364-1377.] |
[13] | LIU Y, CHEN Z, XIAO H, et al. Driving factors of carbon dioxide emissions in China: An empirical study using 2006-2010 provincial data. Frontiers of Earth Science, 2016,11(1):156-161. |
[14] | LIU Y, XIAO H, ZHANG N. Industrial carbon emissions of China's regions: A spatial econometric analysis. Sustainability, 2016,8(3):210-224. |
[15] | [ FU C B, DAN L, FENG J M, et al. Temporal and spatial heterogeneous distribution of tropospheric CO2 over China and its possible genesis. Chinese Journal of Geophysics, 2018,61(11):4373-4382.] |
[16] | [ LI Y L, XING Z Y, MU C, et al. Spatial and temporal variations of near surface atmospheric CO2 with mobile measurements in fall and spring in Xiamen, China. Environmental Science, 2014,35(5):1671-1679.] |
[17] | [ YANG C Y, WANG H J, HAN S J, et al. Climate simulation for dynamic heterogeneous distribution of atmospheric CO2 concentration. Chinese Journal of Geophysics, 2012,55(9):2809-2825.] |
[18] |
ZHANG X, LI X, CHEN D, et al. Overestimated climate warming and climate variability due to spatially homogeneous CO2 in climate modeling over the Northern Hemisphere since the mid-19th century. Scientific Reports, 2019,9(1):1-9.
doi: 10.1038/s41598-018-37186-2 pmid: 30626917 |
[19] | [ YAO Z G, ZHAO Z L, HAN Z G. Stratospheric gravity waves during summer over East Asia derived from ARIS observations. Chinese Journal of Geophysics, 2015,58(4):1121-1134.] |
[20] | CHAHINE M T, CHEN L K, DIMOTAKIS P, et al. Satellite remote sounding of mid-tropospheric CO2. Geophysical Research Letters, 2008,35(17):L17807. |
[21] |
KUMMU M, TAKA M, GUILLAUME J H A. Gridded global datasets for gross domestic product and human development index over 1990-2015. Scientific Data, 2018,5:180004.
pmid: 29406518 |
[22] | JANSSENS-MAENHOUT G, CRIPPA M, GUIZZARDI D, et al. Fossil CO2 & GHG Emissions of All World Countries. Luxembourg: Publications Office of the European Union, 2017. |
[23] | ANSELIN L. Local indicators of spatial association: LISA. Geographical Analysis, 1995,27(2):93-115. |
[24] | WANG C, DU X, LIU Y. Measuring spatial spillover effects of industrial emissions: A method and case study in Anhui province, China. Journal of Cleaner Production, 2017,141:1240-1248. |
[25] | LE TREUT H. Historical overview of climate change. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. |
[26] | WANG Z, LIU W, YIN J. Driving forces of indirect carbon emissions from household consumption in China: An input-output decomposition analysis. Natural Hazards, 2015,75(2S):257-272. |
[27] | PIELKE JR R A. What is climate change?. Energy & Environment, 2004,15(3):515-520. |
[28] | [ PENG J, DAN L. The 100-year scale response of terrestrial ecosystem carbon fluxes to climate carbon cycle caused by increasing atmospheric CO2 concentration using an Earth System Model. Acta Ecologica Sinica, 2016,36(21):6939-6950.] |
[29] | [ QIU X G, TAN J L. Study on the effect from industrial restructuring to energy-saving and emission- reducing based on the panel data of 247 cities in China. Science and Technology Management Research, 2015, (10):239-243.] |
[30] | HANSEN J, SATO M. Regional climate change and national responsibilities. Environmental Research Letters, 2016,11(3):034009. |
[31] | NORDHAUS W D. Economic aspects of global warming in a post-Copenhagen environment. Proceedings of the National Academy of Sciences, 2010,107(26):11721-11726. |
[1] | 田云, 林子娟. 巴黎协定下中国碳排放权省域分配及减排潜力评估研究[J]. 自然资源学报, 2021, 36(4): 921-933. |
[2] | 田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价——基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395-410. |
[3] | 王帅, 赵荣钦, 杨青林, 肖连刚, 杨文娟, 余娇, 朱瑞明, 揣小伟, 焦士兴. 碳排放约束下的农业生产效率及其空间格局——基于河南省65个村庄的调查[J]. 自然资源学报, 2020, 35(9): 2092-2104. |
[4] | 吴景辉, 张戈, 王耕. 能源富集区贸易隐含碳及隐含SO2排放转移——以山西省为例[J]. 自然资源学报, 2020, 35(6): 1445-1459. |
[5] | 田华征, 马丽. 中国工业碳排放强度变化的结构因素解析[J]. 自然资源学报, 2020, 35(3): 639-653. |
[6] | 沈杨, 汪聪聪, 高超, 丁镭. 基于城市化的浙江省湾区经济带碳排放时空分布特征及影响因素分析[J]. 自然资源学报, 2020, 35(2): 329-342. |
[7] | 王康, 李志学, 周嘉. 环境规制对碳排放时空格局演变的作用路径研究——基于东北三省地级市实证分析[J]. 自然资源学报, 2020, 35(2): 343-357. |
[8] | 丁明磊, 李宇翔, 赵荣钦, 张战平, 侯丽朋, 刘秉涛, 刘薇. 面向配额分配模拟的工业行业碳排放绩效——以郑州市为例[J]. 自然资源学报, 2019, 34(5): 1027-1040. |
[9] | 柳君波, 高俊莲, 徐向阳. 中国煤炭供应行业格局优化及排放[J]. 自然资源学报, 2019, 34(3): 473-486. |
[10] | 周迪, 王雪芹. 中国碳排放效率与产业结构升级的耦合度及耦合路径[J]. 自然资源学报, 2019, 34(11): 2305-2316. |
[11] | 崔盼盼, 张艳平, 张丽君, 孙莹莹, 郑智成, 王伟, 徐晓霞. 中国省域隐含碳排放及其驱动机理时空演变分析[J]. 自然资源学报, 2018, 33(5): 879-892. |
[12] | 杨勤业, 景可, 徐建辉. 质疑:“红旗河”调水功能的可行性[J]. 自然资源学报, 2018, 33(5): 893-898. |
[13] | 卢新海, 匡兵, 李菁. 碳排放约束下耕地利用效率的区域差异及其影响因素[J]. 自然资源学报, 2018, 33(4): 657-668. |
[14] | 赵巧芝, 闫庆友. 基于投入产出的中国行业碳排放及减排效果模拟[J]. 自然资源学报, 2017, 32(9): 1528-1541. |
[15] | 原嫄, 席强敏, 李国平. 产业关联水平对碳排放演化的影响机理及效应研究——基于欧盟27国投入产出数据的实证分析[J]. 自然资源学报, 2017, 32(5): 841-853. |
|