自然资源学报 ›› 2021, Vol. 36 ›› Issue (4): 921-933.doi: 10.31497/zrzyxb.20210409
收稿日期:
2019-12-04
修回日期:
2020-03-17
出版日期:
2021-04-28
发布日期:
2021-06-28
作者简介:
田云(1986- ),男,湖北长阳人,博士,副教授,研究方向为资源与环境经济,低碳经济与低碳农业。E-mail: tianyun1986@163.com
基金资助:
Received:
2019-12-04
Revised:
2020-03-17
Online:
2021-04-28
Published:
2021-06-28
摘要:
通过构建碳排放权区域分配模型完成了省域分配,在此基础上与当前各地实际碳排放量进行比对,明晰了各自初始空间余额;而后对碳排放权欠缺地区的碳减排潜力进行了综合评估。研究结果表明:(1)我国30个省区碳排放权分配存在较大差异,其中云南配额最高,占比高达10.53%;宁夏配额最少,占比仅为0.28%。(2)全国有14个省区碳排放权初始空间余额表现出盈余状态,根据成因差异可大致分为“低排放、高配额”“低排放、低配额”以及“高排放、高配额”等三种类型;其他16个地区均表现出一定程度的欠缺,结合数值差异可划分为以江苏等4地为代表的轻度欠缺地区,以天津等7地为代表的中度欠缺地区,以及以辽宁等5地为代表的重度欠缺地区。(3)浙江、天津、山东等3地目前所具备的碳减排潜力要明显高于其他地区,而各地区的碳减排潜力水平虽与其碳排放权欠缺量表现出了一定趋同性但并非完全一致。
田云, 林子娟. 巴黎协定下中国碳排放权省域分配及减排潜力评估研究[J]. 自然资源学报, 2021, 36(4): 921-933.
TIAN Yun, LIN Zi-juan. Provincial distribution of China's carbon emission rights and assessment of its emission reduction potential under the Paris Agreement[J]. JOURNAL OF NATURAL RESOURCES, 2021, 36(4): 921-933.
表3
2017年我国30个省级行政区碳排放量、碳排放权分配额及其初始余额
地区 | 碳排放权分配额 | 碳排放量 | 碳排放权初始空间余额 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
组别 | 地区 | 数量/108 t | 占比/% | 排名 | 数量/108 t | 占比/% | 排名 | 数量/108 t | 排名 | 类型 | |||
I区组8.92% | 北京 | 7.885 | 5.85 | 6 | 0.805 | 0.60 | 28 | 7.080 | 4 | 充分盈余 | |||
上海 | 4.143 | 3.07 | 13 | 2.612 | 1.94 | 22 | 1.531 | 9 | 中度盈余 | ||||
Ⅱ区组 15.00% | 河北 | 3.835 | 2.84 | 16 | 8.747 | 6.48 | 3 | -4.912 | 27 | 重度欠缺 | |||
浙江 | 4.050 | 3.00 | 14 | 4.586 | 3.40 | 11 | -0.535 | 17 | 轻度欠缺 | ||||
安徽 | 4.514 | 3.35 | 12 | 4.544 | 3.37 | 12 | -0.030 | 15 | 轻度欠缺 | ||||
湖北 | 6.098 | 4.52 | 8 | 4.163 | 3.09 | 13 | 1.935 | 7 | 中度盈余 | ||||
湖南 | 1.738 | 1.29 | 21 | 3.995 | 2.96 | 15 | -2.258 | 23 | 中度欠缺 | ||||
Ⅲ区组 20.63% | 江苏 | 8.765 | 6.50 | 5 | 8.667 | 6.42 | 4 | 0.098 | 14 | 略微盈余 | |||
山东 | 2.819 | 2.09 | 18 | 14.465 | 10.72 | 1 | -11.646 | 30 | 重度欠缺 | ||||
河南 | 9.139 | 6.77 | 4 | 6.302 | 4.67 | 8 | 2.837 | 5 | 中度盈余 | ||||
广东 | 7.109 | 5.27 | 7 | 6.698 | 4.97 | 7 | 0.410 | 13 | 略微盈余 | ||||
Ⅳ区组 6.37% | 天津 | 0.693 | 0.51 | 27 | 1.733 | 1.28 | 26 | -1.040 | 19 | 中度欠缺 | |||
山西 | 0.591 | 0.44 | 29 | 9.118 | 6.76 | 2 | -8.528 | 29 | 重度欠缺 | ||||
海南 | 1.619 | 1.20 | 22 | 0.695 | 0.52 | 29 | 0.924 | 11 | 略微盈余 | ||||
重庆 | 1.210 | 0.90 | 24 | 1.614 | 1.20 | 27 | -0.404 | 16 | 轻度欠缺 | ||||
贵州 | 0.900 | 0.67 | 26 | 3.106 | 2.30 | 17 | -2.206 | 22 | 中度欠缺 | ||||
甘肃 | 1.058 | 0.78 | 25 | 2.172 | 1.61 | 25 | -1.114 | 20 | 中度欠缺 | ||||
青海 | 1.476 | 1.09 | 23 | 0.642 | 0.48 | 30 | 0.834 | 12 | 略微盈余 | ||||
宁夏 | 0.382 | 0.28 | 30 | 2.570 | 1.90 | 23 | -2.187 | 21 | 中度欠缺 | ||||
新疆 | 0.669 | 0.50 | 28 | 5.641 | 4.18 | 9 | -4.972 | 28 | 重度欠缺 | ||||
Ⅴ区组 33.69% | 内蒙古 | 5.838 | 4.33 | 9 | 8.636 | 6.40 | 5 | -2.798 | 25 | 中度欠缺 | |||
黑龙江 | 11.704 | 8.68 | 3 | 4.058 | 3.01 | 14 | 7.646 | 3 | 充分盈余 | ||||
四川 | 13.694 | 10.15 | 2 | 3.551 | 2.63 | 16 | 10.143 | 2 | 充分盈余 | ||||
云南 | 14.209 | 10.53 | 1 | 2.458 | 1.82 | 24 | 11.751 | 1 | 充分盈余 | ||||
Ⅵ区组 15.39% | 辽宁 | 3.008 | 2.23 | 17 | 7.289 | 5.40 | 6 | -4.280 | 26 | 重度欠缺 | |||
吉林 | 3.921 | 2.91 | 15 | 2.650 | 1.96 | 21 | 1.271 | 10 | 中度盈余 | ||||
福建 | 1.994 | 1.48 | 20 | 2.821 | 2.09 | 18 | -0.827 | 18 | 轻度欠缺 | ||||
江西 | 4.855 | 3.60 | 10 | 2.752 | 2.04 | 20 | 2.103 | 6 | 中度盈余 | ||||
广西 | 4.515 | 3.35 | 11 | 2.790 | 2.07 | 19 | 1.725 | 8 | 中度盈余 | ||||
陕西 | 2.470 | 1.83 | 19 | 5.020 | 3.72 | 10 | -2.550 | 24 | 中度欠缺 |
[1] | SATHAYE J, MONAHAN P, SANSTAD A. Costs of reducing carbon emissions from the energy sector: A comparison of China, India, and Brazil. Ambio, 1996,25(4):262-266. |
[2] | [ CHEN W Y, WU Z X. Historical responsibility for climate change and carbon emission right allocation. China Environmental Science, 1998, (6):2-6.] |
[3] | ZHANG Z X. Decoupling China's carbon emissions increase from economic growth: An economic analysis and policy implications. World Development, 2000, 28, 4:739-752. |
[4] | [ PAN J H. A conceptual framework for understanding human development potential: With empirical analysis of global demand for carbon emissions. Social Sciences in China, 2002, (6):15-25, 204.] |
[5] | [ HU Z, WANG Y, HE J J, et al. Characteristics of urban household energy consumption and carbon emissions in Western China: Evidence from China Family Panel Studies (CFPS). Journal of Arid Land Resources and Environment, 2019,33(4):1-8.] |
[6] | [ PENG S J, ZHANG W C, SUN C W. China's production-based and consumption-based carbon emissions and their determinants. Economic Research Journal, 2015,50(1):168-182.] |
[7] | [ WANG F, WU L H, YANG C. Driving factors for growth of carbon dioxide emissions during economic development in China. Economic Research Journal, 2010,45(2):123-136.] |
[8] | [ XU G Y, SONG D Y. An empirical study of the Environmental Kuznets Curve for China's carbon emissions: Based on provincial panel data. China Industrial Economics, 2010, (5):37-47.] |
[9] | LI Y, HEWITT C N. The effect of trade between China and the UK on national and global carbon dioxide emissions. Energy Policy, 2008,36(6):1907-1914. |
[10] | [ HUANG R, WANG Z, ZHONG Z Q, et al. Input-output analysis of embodied carbon emissions and SO2 emissions in regional trade: A case study of Jiangsu. Journal of Natural Resources, 2017,32(5):854-863.] |
[11] | DHAKAL S. Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy, 2009,37(11):4208-4219. |
[12] | TIAN Y, ZHANG J B, HE Y Y. Research on spatial-temporal driving factor of agricultural carbon emissions in China. Journal of Integrative Agriculture, 2014,6:1393-1403. |
[13] | CHANG C C. A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China. Applied Energy, 2010,87(11):3533-3537. |
[14] | LI F, DONG S C, LI X, et al. Energy consumption-economic growth relationship and carbon dioxide emissions in China. Energy Policy, 2011,39(2):568-574. |
[15] | [ LI K, QI S Z. Trade openness, economic growth and carbon dioxide emission in China. Economic Research Journal, 2011,46(11):60-72, 102.] |
[16] | WANG K, WEI Y M. China's regional industrial energy efficiency and carbon emissions abatement costs. Applied Energy, 2014,136(s1):617-631. |
[17] | CUI L B, FAN Y, ZHU L, et al. How will the emissions trading scheme save cost for achieving China's 2020 carbon intensity reduction target?. Applied Energy, 2014,136(12):1043-1052. |
[18] | [ ZHOU D, WANG X Q. Research on coupling degree and coupling path between China's carbon emission efficiency and industrial structure upgrade. Journal of Natural Resources, 2019,34(11):2305-2316.] |
[19] | [ LIN B Q, SUN C W. How can China achieve its carbon emission reduction target while sustaining economic growth. Social Sciences in China, 2011, (1):64-76, 221.] |
[20] | [ TU Z G. Strategic measures to reduce China's carbon emissions: Based on index decomposition analysis of carbon emission in eight industries. Social Sciences in China, 2012, (3):7-94, 206-207.] |
[21] | JIANG J J, YE B, XIE D J, et al. Provincial-level carbon emission drivers and emission reduction strategies in China: combining multi-layer LMDI decomposition with hierarchical clustering. Journal of Cleaner Production, 2017,169(12):178-190. |
[22] | [ HUANG Z P. Does the carbon emission trading scheme promote carbon mitigation?. Journal of Arid Land Resources and Environment, 2018,32(9):36-40.] |
[23] | [ WANG Y, CHENG Y, YANG G C, et al. Provincial decomposition of China's carbon emission rights under the constraint of 2020 and 2030 carbon intensity targets. China Environmental Science, 2018,38(8):3180-3188.] |
[24] | [ ZHOU D, ZHENG C P, HUA S R, et al. The potentialities and paths of China's carbon emission reduction based on the coordination of fairness and efficiency. Journal of Natural Resources, 2019,34(1):80-91.] |
[25] | [ TIAN Y, CHEN C B. Effectiveness evaluation of carbon emission reduction in China, identification of backward areas and path optimization. Business Management Journal, 2019, (6):23-37.] |
[26] | [ SHAN H J. Reestimating the capital stock of China: 1952-2006. The Journal of Quantitative & Technical Economics, 2008,25(10):17-31.] |
[27] | [ WANG H H, LIU H C, HE X J, et al. Allocation of carbon emissions right based on the intergenerational equity. China Environmental Science, 2016,36(6):1895-1904.] |
[1] | 邓祥征, 蒋思坚, 刘冰, 王泽昊, 邵卿. 全球二氧化碳浓度非均匀分布条件下碳排放与升温关系的统计分析[J]. 自然资源学报, 2021, 36(4): 934-947. |
[2] | 田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价——基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395-410. |
[3] | 王帅, 赵荣钦, 杨青林, 肖连刚, 杨文娟, 余娇, 朱瑞明, 揣小伟, 焦士兴. 碳排放约束下的农业生产效率及其空间格局——基于河南省65个村庄的调查[J]. 自然资源学报, 2020, 35(9): 2092-2104. |
[4] | 吴景辉, 张戈, 王耕. 能源富集区贸易隐含碳及隐含SO2排放转移——以山西省为例[J]. 自然资源学报, 2020, 35(6): 1445-1459. |
[5] | 田华征, 马丽. 中国工业碳排放强度变化的结构因素解析[J]. 自然资源学报, 2020, 35(3): 639-653. |
[6] | 沈杨, 汪聪聪, 高超, 丁镭. 基于城市化的浙江省湾区经济带碳排放时空分布特征及影响因素分析[J]. 自然资源学报, 2020, 35(2): 329-342. |
[7] | 王康, 李志学, 周嘉. 环境规制对碳排放时空格局演变的作用路径研究——基于东北三省地级市实证分析[J]. 自然资源学报, 2020, 35(2): 343-357. |
[8] | 丁明磊, 李宇翔, 赵荣钦, 张战平, 侯丽朋, 刘秉涛, 刘薇. 面向配额分配模拟的工业行业碳排放绩效——以郑州市为例[J]. 自然资源学报, 2019, 34(5): 1027-1040. |
[9] | 柳君波, 高俊莲, 徐向阳. 中国煤炭供应行业格局优化及排放[J]. 自然资源学报, 2019, 34(3): 473-486. |
[10] | 周迪, 王雪芹. 中国碳排放效率与产业结构升级的耦合度及耦合路径[J]. 自然资源学报, 2019, 34(11): 2305-2316. |
[11] | 周迪, 郑楚鹏, 华诗润, 黄宇森. 公平与效率协调视角下的中国碳减排潜力与路径[J]. 自然资源学报, 2019, 34(1): 80-91. |
[12] | 崔盼盼, 张艳平, 张丽君, 孙莹莹, 郑智成, 王伟, 徐晓霞. 中国省域隐含碳排放及其驱动机理时空演变分析[J]. 自然资源学报, 2018, 33(5): 879-892. |
[13] | 卢新海, 匡兵, 李菁. 碳排放约束下耕地利用效率的区域差异及其影响因素[J]. 自然资源学报, 2018, 33(4): 657-668. |
[14] | 赵巧芝, 闫庆友. 基于投入产出的中国行业碳排放及减排效果模拟[J]. 自然资源学报, 2017, 32(9): 1528-1541. |
[15] | 原嫄, 席强敏, 李国平. 产业关联水平对碳排放演化的影响机理及效应研究——基于欧盟27国投入产出数据的实证分析[J]. 自然资源学报, 2017, 32(5): 841-853. |
|