自然资源学报 ›› 2021, Vol. 36 ›› Issue (4): 854-865.doi: 10.31497/zrzyxb.20210404
收稿日期:
2019-12-30
修回日期:
2020-06-20
出版日期:
2021-04-28
发布日期:
2021-06-28
通讯作者:
焦世泰(1981—2020),男,甘肃永登人,博士,副教授,研究方向为旅游发展与区域经济。E-mail: jst6428196@163.com作者简介:
胡森林(1991- ),男,安徽黄山人,博士研究生,研究方向为生态文明与区域发展。E-mail: hsllh520@163.com
基金资助:
HU Sen-lin1(), JIAO Shi-tai2(
), ZHANG Xiao-qi3
Received:
2019-12-30
Revised:
2020-06-20
Online:
2021-04-28
Published:
2021-06-28
摘要:
旅游业已成为中国经济增长的重要驱动力。在静态(空间)马尔科夫链模型的基础上,创新性地引入动态空间马尔科夫链模型,系统地分析中国城市旅游发展的时空格局及影响因素。结果表明:(1)中国城市旅游发展具有持续性的特征,总体上存在“路径依赖”的趋势;同时,旅游发展低水平区向较高/高水平区演变的概率较低,城市旅游发展存在“贫困陷阱”现象。(2)中国城市旅游发展水平的类型演变在地理空间上存在紧密的关联性,即与旅游发展水平越高的城市邻接,其向上级类型区转移的概率也越大;反之与旅游发展水平越低的城市邻接,其向下级类型区转移的概率也越大。(3)中国城市旅游发展受到市场化水平、资源禀赋、对外开放度等方面的综合影响。针对中国城市旅游发展存在过度商业化等问题,提出相应的政策建议。
胡森林, 焦世泰, 张晓奇. 中国城市旅游发展的时空演化及影响因素——基于动态空间马尔科夫链模型的分析[J]. 自然资源学报, 2021, 36(4): 854-865.
HU Sen-lin, JIAO Shi-tai, ZHANG Xiao-qi. Spatio-temporal evolution and influencing factors of China's tourism development: Based on the non-static spatial Markov chain model[J]. JOURNAL OF NATURAL RESOURCES, 2021, 36(4): 854-865.
表2
静态空间马尔可夫转移概率
类型 | t/(t+1) | 第一类型 | 第二类型 | 第三类型 | 第四类型 |
---|---|---|---|---|---|
第二类型 | 第一类型 | 0.952 | 0.047 | 0.000 | 0.000 |
第二类型 | 0.177 | 0.716 | 0.074 | 0.030 | |
第三类型 | 0.000 | 0.060 | 0.848 | 0.090 | |
第四类型 | 0.030 | 0.000 | 0.000 | 0.969 | |
第三类型 | 第一类型 | 0.922 | 0.071 | 0.006 | 0.000 |
第二类型 | 0.108 | 0.811 | 0.008 | 0.000 | |
第三类型 | 0.013 | 0.110 | 0.827 | 0.048 | |
第四类型 | 0.006 | 0.019 | 0.177 | 0.795 | |
第四类型 | 第一类型 | 0.853 | 0.138 | 0.003 | 0.003 |
第二类型 | 0.061 | 0.807 | 0.118 | 0.012 | |
第三类型 | 0.007 | 0.096 | 0.814 | 0.081 | |
第四类型 | 0.000 | 0.009 | 0.103 | 0.887 |
表4
动态空间马尔科夫链模型的回归结果(从旅游发展低/中水平类型转出情形)
解释变量 | 低—中 | 低—较高 | 中—低 | 中—较高 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
二进制 | 反距离平方 | 二进制 | 反距离平方 | 二进制 | 反距离平方 | 二进制 | 反距离平方 | ||||
市场化水平 | -0.372***(-3.069) | -0.346***(-2.907) | -0.505 (-1.277) | -0.570 (-1.362) | 0.075 (0.709) | 0.133(1.186) | -0.145 (-1.351) | -0.156 (-1.453) | |||
星级酒店密度 | 1.918*** (3.106) | 1.775*** (2.821) | 0.481 (0.141) | 1.514 (0.589) | 0.001 (0.004) | -0.096 (-0.178) | 0.606* (1.670) | 0.596* (1.688) | |||
旅游资源禀赋 | 0.065* (1.847) | 0.079** (2.410) | 0.163(1.165) | 0.107 (0.829) | 0.033 (0.827) | 0.010(0.288) | 0.022 (0.590) | 0.027 (0.871) | |||
商业网密度 | -0.186** (-2.051) | -0.188** (-2.101) | -0.510 (-0.833) | -0.525 (-0.893) | 0.035 (0.775) | 0.055 (1.137) | -0.160* (-1.765) | -0.168* (-1.846) | |||
路网密度 | 0.309 (0.749) | 0.478 (1.074) | 1.917 (1.209) | 1.253 (0.691) | -0.840**(-2.122) | -0.574 (-1.371) | 0.250 (0.647) | 0.213 (0.547) | |||
产业结构 | 0.525 (0.237) | 0.311 (0.139) | 19.254** (2.247) | 19.897**(2.273) | -3.632* (-1.691) | -3.659*(-1.689) | 0.972 (0.490) | 1.033 (0.521) | |||
对外开放度 | -0.097 (-0.121) | -0.250 (-0.313) | 2.580* (1.707) | 3.092* (1.749) | -0.347 (-0.345) | -0.501(-0.463) | -1.101 (-0.916) | -1.067 (-0.915) | |||
互联网发展 | 5.914* (1.753) | 6.462* (1.924) | -5.461 (-0.298) | -10.624(-0.504) | 1.544 (0.884) | 1.766 (1.028) | 3.789** (2.202) | 3.738** (2.183) | |||
经济发展水平 | 0.076 (0.477) | 0.079 (0.500) | 1.175**(2.132) | 1.247** (2.125) | -0.187*(-1.669) | -0.182*(-1.667) | -0.051 (-0.577) | -0.051 (-0.574) | |||
空间因素 | 0.004 (0.379) | -26.281(-0.842) | -0.041 (-0.587) | 68.651 (0.762) | -0.029** (-2.066) | -81.651***(-2.644) | 0.004 (0.453) | 11.389 (0.911) | |||
intercept | -0.735 (-0.861) | -0.721 (-0.850) | -10.876*** (-3.022) | -11.198***(-2.999) | -0.458 (-0.525) | -0.788 (-0.861) | -1.697* (-1.834) | -1.658* (-1.802) | |||
Log-Likelihood | -224.24 | -223.93 | -24.230 | -24.206 | -222.67 | -220.17 | -229.50 | -229.22 | |||
Observations | 770 | 770 | 699 | 699 | 781 | 781 | 713 | 713 |
表5
动态空间马尔可夫链模型的回归结果(从旅游发展高/较高水平类型转出情形)
解释变量 | 较高—低 | 较高—高 | 高—中 | 高—较高 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
二进制 | 反距离平方 | 二进制 | 反距离平方 | 二进制 | 反距离平方 | 二进制 | 反距离平方 | ||||
市场化水平 | 1.181*** (2.864) | 1.013*** (2.703) | -0.020 (-0.182) | -0.015(-0.137) | 1.380**(2.070) | 0.629* (1.745) | 0.193* (1.807) | 0.199* (1.970) | |||
星级酒店密度 | -16.526**(-2.247) | -13.956** (-2.199) | 0.650**(1.956) | 0.645* (1.930) | -2.220(-0.730) | -2.278(-0.633) | -0.451 (-1.354) | -0.443 (-1.362) | |||
旅游资源禀赋 | -0.288(-0.986) | -0.341 (-1.282) | -0.001 (-0.071) | 0.006 (0.270) | -2.964**(-2.282) | -2.646** (-2.117) | -0.001 (-0.042) | -0.001 (-0.043) | |||
商业网密度 | 0.036(0.077) | 0.092 (0.777) | -0.007(-0.376) | -0.008(-0.380) | 0.029 (0.022) | 0.186 (0.243) | 0.021(1.238) | 0.021 (1.225) | |||
路网密度 | 2.898(1.501) | 2.738 (1.421) | 0.184(0.452) | 0.120 (0.277) | -0.252 (-0.118) | -0.045 (-0.021) | 0.367(0.943) | 0.360 (0.904) | |||
产业结构 | 6.026 (0.624) | 7.878 (0.847) | -0.035(-0.018) | -0.045(-0.023) | -22.208* (-1.723) | -16.925 (-1.632) | -1.206 (-0.710) | -1.225 (-0.725) | |||
对外开放度 | 1.648 (0.837) | 2.123 (1.249) | 0.064 (0.089) | -0.005 (-0.007) | -3.834 (-0.680) | -0.512 (-0.232) | -0.481 (-0.803) | -0.472 (-0.808) | |||
互联网发展 | -39.805*(-1.683) | -48.836** (-2.208) | -4.740(-1.442) | -4.313(-1.372) | 25.086**(1.957) | 13.765 (1.123) | 1.600(1.196) | 1.571 (1.190) | |||
经济发展水平 | 0.160(0.312) | 0.192 (0.550) | 0.032(0.274) | 0.019 (0.168) | -4.400* (-1.760) | -2.874* (-1.686) | -0.087 (-0.727) | -0.088 (-0.733) | |||
空间因素 | -0.187* (-1.778) | -76.882(-0.671) | 0.009(0.961) | 8.284 (0.579) | -0.206 (-1.565) | 64.542 (0.695) | -0.0004 (-0.038) | 1.519 (0.087) | |||
intercept | -10.064**(-2.115) | -10.905** (-2.265) | -2.475**(-2.380) | -2.394**(-2.295) | 5.204(1.011) | 3.365 (0.839) | -0.334 (-0.388) | -0.299 (-0.344) | |||
Log-Likelihood | -26.096 | -27.876 | -193.99 | -194.26 | -12.850 | -14.462 | -191.98 | -191.97 | |||
Observations | 781 | 781 | 703 | 703 | 767 | 767 | 762 | 762 |
[1] | [ XI J C, LIU M H. Analysis of basic national conditions of China's tourism industry. Journal of Natural Resources, 2019,34(8):1569-1580.] |
[2] | WEN J J, SINHA C. The spatial distribution of tourism in China: Trends and impacts. Asia Pacific Journal of Tourism Research, 2009,14(1):93-104 |
[3] | [ LU L, YU F L. A study on the spatial characteristic of provincial difference of tourism economy. Economic Geography, 2005,25(3):406-410.] |
[4] | [ SHEN J H, LU Y Q, ZHOU Y C, et al. Domestic tourism economic growth and spatial pattern evolution of regional tourism differences in Anhui province. Scientia Geographica Sinica, 2012,32(10):1220-1228.] |
[5] | [ WAN X C, WANG H T, FU C X, et al. The intercity difference and influencing factors of inbound tourism development in China: Taking the major tourism cities as an example. Geographical Research, 2013,32(2):337-346.] |
[6] | [ WANG Z F, LIU Q F. The spatio-temporal evolution of tourism eco-efficiency in the Yangtze River Economic Belt and its interactive response with tourism economy. Journal of Natural Resources, 2019,34(9):1945-1961.] |
[7] | ILIĆ I, PETREVSKA I. Using DEA method for determining tourism efficiency of Serbia and the surrounding countries. Hotel and Tourism Management, 2018,6(1):73-80. |
[8] | NGUYEN T Q T, YOUNG T, JOHNSON P, et al. Conceptualising networks in sustainable tourism development. Tourism Management Perspectives, 2019,32:100575, Doi: 10.1016/j.tmp.2019.100575Get. |
[9] | [ WANG J, XU J H, XIA J C. Study on the spatial correlation structure of China's tourism economic and its effect: Based on social network analysis. Tourism Tribune, 2017,32(7):15-26.] |
[10] | [ GAO P, XI J C. Research on the spatial structure and complex characteristics of tourism destination network: A case study of Yesanpo tourism destination. Journal of Natural Resources, 2018,33(1):85-98.] |
[11] | [ LIU D J, HU J, CHENG S W, et al. Spatial pattern and influencing factors of tourism micro-blogs in China: A case of tourism Sina micro-blogs. Scientia Geographica Sinica, 2015,35(6):717-724.] |
[12] | [ LU Y Y, BAO J G. The tourism commercialization of 'homes' in Dai families in Xishuangbanna. Geographical Research, 2018,37(5):967-980.] |
[13] | GUEDES A S, JIMÉNEZ M I M. Spatial patterns of cultural tourism in Portugal. Tourism Management Perspectives, 2015,16:107-115. |
[14] | [ WANG D G, CHEN T, LU L, et al. Mechanism and HSR effect of spatial structure of regional tourist flow: Case study of Beijing-Shanghai HSR in China. Acta Geographica Sinica, 2015,70(2):214-233.] |
[15] | [ LI L, ZHAO L. An empirical study on the efficiency of China's tourism development and its influencing factors: Based on stochastic frontier analysis. Economic Management, 2013,35(2):124-134.] |
[16] | [ YU F L, HUANG Z F, CAO F D. Contribution of institutional change to China's tourism economic growth: A marketization perspective. Tourism Tribune, 2013,28(7):13-21.] |
[17] | [ LI G Q, HU Z G, CAO J H. Institutional change and tourism economic growth: Policy evaluation of replacing the TB with the TDC based on the double difference method. Tourism Tribune, 2018,33(1):13-24.] |
[18] | [ WU Y Y, SONG Y X. Spatial pattern evolution and influence factors of tourism economy in China. Scientia Geographica Sinica, 2018,38(9):1491-1498.] |
[19] | [ HU W H, SUN J P, YU F F. Temporal-spatial evolution patterns of regional tourism economic development in Anhui province. Geographical Research, 2015,34(9):1795-1806.] |
[20] | [ QIN C L, LIU Y X, LI C. Spatial spillover and the convergence of regional economic growth: A case study of the Yangtze River Delta. Social Sciences in China, 2012, (5):76-94.] |
[21] | [ SUI J L, LIU J Q, YAN C. Phase transfer identification of China's tourism economy dynamic path: Based on Markov regime switching model. Tourism Tribune, 2013,28(7):22-32.] |
[22] | [ TENG T W, SUN R, HU S L. Coupling coordination and spatial correlation of scientific and technological innovation and green development in the Yangtze River Economic Belt. Resources and Environment in the Yangtze Basin, 2019,28(11):2574-2585.] |
[23] | [ PU Y X, MA R H, GE Y, et al. Spatial-temporal dynamics of Jiangsu regional convergence with spatial Markov chains approach. Acta Geographica Sinica, 2005,60(5):817-826.] |
[24] | SINHA N C, ISLAM M A, AHMED K S. Chain dependence and stationarity test for transition probabilities of Markov chain under logistic regression model. Journal of the Korean Statistical Society, 2006,35(4):355-376. |
[25] | SINHA N C, ISLAM M A, AHMED K S. Order determination for the transition probabilities of Markov chain based on logistic regression model. Journal of Applied Statistical Science, 2010,17(4):1519-1539. |
[26] |
World Bank. World Development Indicators. CD Database, 2004.
pmid: 25767294 |
[27] | SEQUEIRA T N, NUNES P M. Does tourism influence economic growth? A dynamic panel data approach. Applied Economics, 2008,40(18):2431-2441. |
[28] |
CORTES-JIMENEZ I. Which type of tourism matters to the regional economic growth? The cases of Spain and Italy. International Journal of Tourism Research, 2008,10(2):127-139.
doi: 10.1002/(ISSN)1522-1970 |
[29] | [ ZHANG P, YANG J, ZHOU X. Tourism and regional economic growth: A dynamic panel data approach based on 254 prefectures in China. Economic Management, 2014,36(6):116-126.] |
[30] | RAY M A, KANG J, ZHANG H. Detecting spatial clusters via a mixture of dirichlet processes. Journal of Probability and Statistics, 2018: 1-20. |
[1] | 唐鸿, 许春晓. 中国红色旅游经典景区网络关注度时空演变及影响因素[J]. 自然资源学报, 2021, 36(7): 1792-1810. |
[2] | 张超, 杨艳昭, 封志明, 贾琨, 郎婷婷. “一带一路”沿线国家粮食消费时空格局[J]. 自然资源学报, 2021, 36(6): 1398-1412. |
[3] | 刘晓宇, 辛良杰. 中国生猪耗粮系数时空演变特征[J]. 自然资源学报, 2021, 36(6): 1494-1504. |
[4] | 韩璟, 潘子纯, 卢新海. 东南亚地区中国海外耕地投资项目的空间分布及影响因素分析[J]. 自然资源学报, 2021, 36(6): 1521-1534. |
[5] | 王介勇, 戴纯, 周墨竹, 刘正佳. 全球粮食贸易网络格局及其影响因素[J]. 自然资源学报, 2021, 36(6): 1545-1556. |
[6] | 孔冬艳, 陈会广, 吴孔森. 中国“三生空间”演变特征、生态环境效应及其影响因素[J]. 自然资源学报, 2021, 36(5): 1116-1135. |
[7] | 李凡, 强文丽, 刘晓洁, 牛叔文, 朱芹瑶, 李平. 中国县域肉类生产的时空演变及影响因素[J]. 自然资源学报, 2021, 36(5): 1224-1237. |
[8] | 曹永强, 路洁, 冯兴兴. 辽西北春玉米旱灾灾损风险区划[J]. 自然资源学报, 2021, 36(5): 1346-1358. |
[9] | 张杰, 麻学锋. 湖南省乡村旅游地空间分异及影响因素——以五星级乡村旅游区为例[J]. 自然资源学报, 2021, 36(4): 879-892. |
[10] | 王少剑, 王泽宏. 经济转型背景下长三角城市用地扩张及影响因素的时空差异[J]. 自然资源学报, 2021, 36(4): 993-1007. |
[11] | 冀正欣, 王秀丽, 李玲, 关小克, 蔚霖, 许月卿. 南阳盆地区耕地利用效率演变及其影响因素[J]. 自然资源学报, 2021, 36(3): 688-701. |
[12] | 杨钊, 刘永婷, 秦金芳, 刘斌, 王盼盼, 刘世杰, 徐致云. 长三角游乐型主题公园客流时空分布特征及其影响因素分析——以上海欢乐谷、常州恐龙园、芜湖方特为例[J]. 自然资源学报, 2021, 36(3): 722-736. |
[13] | 王长松, 段蕴歆, 张然. 历史时期黄河流域城市空间格局演变与影响因素[J]. 自然资源学报, 2021, 36(1): 69-86. |
[14] | 阎晓, 涂建军. 黄河流域资源型城市生态效率时空演变及驱动因素[J]. 自然资源学报, 2021, 36(1): 223-239. |
[15] | 何培培, 张俊飚, 何可, 陈柱康. 农业生产何以存在低碳效率幻觉?——来自1997—2016年31个省份面板数据的证据[J]. 自然资源学报, 2020, 35(9): 2205-2217. |
|