自然资源学报 ›› 2020, Vol. 35 ›› Issue (11): 2783-2792.doi: 10.31497/zrzyxb.20201117
收稿日期:
2020-02-01
修回日期:
2020-06-15
出版日期:
2020-11-28
发布日期:
2021-01-28
通讯作者:
张力小
E-mail:yangmin2017@mail.bnu.edu.cn;zhanglixiao@bnu.edu.cn
作者简介:
杨敏(1995- ),女,云南德宏人,硕士,主要从事能源转型及其资源环境影响研究。E-mail: 基金资助:
YANG Min(), ZHANG Peng-peng, ZHANG Li-xiao(
), HAO Yan
Received:
2020-02-01
Revised:
2020-06-15
Online:
2020-11-28
Published:
2021-01-28
Contact:
Li-xiao ZHANG
E-mail:yangmin2017@mail.bnu.edu.cn;zhanglixiao@bnu.edu.cn
摘要:
去煤炭化既是能源转型的重要路径,也是能源转型的主要结果。经过20多年的努力,北京市煤炭消费量得到有效控制。系统分析北京市1995—2017年煤炭消费动态变化过程,并利用LMDI方法对2005—2017年的煤炭消费进行分解。结果表明:(1)研究期内北京市煤炭消费相对量(能源结构中的占比)持续下降,绝对量自2005年开始下降,2017年仅有350.5万tce,降幅为83.8%,去煤炭化效果显著。(2)影响因素方面,除经济规模效应外,能源结构、能耗强度与经济结构等因素变化对煤炭消费增长均有抑制作用。在去煤炭化前期经济结构调整贡献较大,后期主要由能源结构改善驱动。(3)分行业而言,电力、热力部门燃煤效率提高、煤改电、煤改气策略实施以及重工业外迁,是实现煤炭消费量削减的关键因素。(4)北京市去煤炭化过程虽对我国其他城市有一定参考作用,但因其自身具有特殊性,较难复制到其他地区。
杨敏, 张鹏鹏, 张力小, 郝岩. 北京城市去煤炭化过程及其驱动因素解析[J]. 自然资源学报, 2020, 35(11): 2783-2792.
YANG Min, ZHANG Peng-peng, ZHANG Li-xiao, HAO Yan. The de-coal process and its driving forces in Beijing[J]. JOURNAL OF NATURAL RESOURCES, 2020, 35(11): 2783-2792.
[1] | 赵珊. 中国煤炭资源现状及建议. 广州化工, 2014,42(15):52-53. |
[ ZHAO S. The status and suggestions of coal resources in China. Guangzhou Chemical Industry, 2014,42(15):52-53.] | |
[2] | 冯博, 王雪青. 考虑雾霾效应的京津冀地区能源效率实证研究. 干旱区资源与环境, 2015,29(10):1-7. |
[ FENG B, WANG X Q. Research on energy efficiency considering the haze effect in Beijing-Tianjin-Hebei Metropolitan Region. Journal of Arid Land Resources and Environment, 2015,29(10):1-7.] | |
[3] | 章轲. 专家解读三年行动计划正研究制定全国运输结构调整方案. https://www.yicai.com/news/5436883.html, 2018-07-05. |
[ ZHANG K. Experts interpretation the three-year action plan study and formulate a plan for adjusting the national transport structure. https://www.yicai.com/news/5436883.html, 2018-07-05.] | |
[4] | SOLOMON B D, KRISHNA K. The coming sustainable energy transition: History, strategies, and outlook. Energy Policy, 2011,39(11):7422-7431. |
[5] | HE J K, TENG F, QI Y. Towards a new climate economics: Research areas and prospects. Chinese Journal of Population, Resources and Environment, 2015,13(1):1-9. |
[6] | FOUQUET R. Historical energy transitions: Speed, prices and system transformation. Energy Research & Social Science, 2016,22:7-12. |
[7] | 舟丹. 全球第三次能源转型的特征. 中外能源, 2017,22(9):89. |
[ ZHOU D. Characteristics of the third global energy transition. Sino-Global Energy, 2017,22(9):89.] | |
[8] | FOUQUET R, PEARSON P J G. Past and prospective energy transitions: Insights from history. Energy Policy, 2012,50:1-7. |
[9] | 世界能源理事会. 全球能源转型(2014). https://www.atkearney.com/documents/10192/5293225/Global+Energy+Transitions, 2018-08-01. |
[ World Energy Council. Global energy transition (2014). https://www.atkearney.com/documents/10192/5293225/Global+Energy+Transitions, 2018-08-01.] | |
[10] | 吴磊, 詹红兵. 国际能源转型与中国能源革命. 云南大学学报: 社会科学版, 2018,17(3):116-127. |
[ WU L, ZHAN H B. International energy transitions and energy revolution in China. Journal of Yunnan University: Social Sciences Edition, 2018,17(3):116-127.] | |
[11] | 刘坚, 任东明. 欧盟能源转型的路径及对我国的启示. 中国能源, 2013,35(12):8-11. |
[ LIU J, REN D M. The path of European Union energy transformation and its enlightenment to China. Energy of China, 2013,35(12):8-11.] | |
[12] | 孙宁鸿, THOMAS S D. 德国实现能源转型的措施与挑战. 中国能源, 2012,34(3):11-14. |
[ SUN N H, THOMAS S D. Measures and challenges of Germany's energy transformation. Energy of China, 2012,34(3):11-14.] | |
[13] | 朱彤. 德国与美国当前能源转型进程比较分析. 国际石油经济, 2016,24(5):9-16. |
[ ZHU T. Comparison analysis on current energy transition in Germany and the United States. International Petroleum Economics, 2016,24(5):9-16.] | |
[14] | ANG B W. ZHANG F Q. A survey of index decomposition analysis in energy and environmental studies. Energy, 2000,25(12):1149-1176. |
[15] | CANSINO J M, ROCIO R, MANUEL O. Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis. Energy Policy, 2016,89:150-159. |
[16] | 李新运, 吴学锰, 马俏俏. 我国行业碳排放量测算及影响因素的结构分解分析. 统计研究, 2014,31(1):56-62. |
[ LI X Y, WU X M, MA Q Q. The measure of China's industry carbon emissions and the structural decomposition analysis of influencing factors. Statistical Research, 2014,31(1):56-62.] | |
[17] | 关军, 蒋立红, 张智慧. 我国建筑业物化能增长的结构分解分析. 环境科学研究, 2016,29(11):1718-1724. |
[ GUAN J, JIANG L H, ZHANG Z H. Structural decomposition analysis of the growth in the Chinese construction sector's embodied energy. Research of Environmental Sciences, 2016,29(11):1718-1724.] | |
[18] | XIE S C. The driving forces of China's energy use from 1992 to 2010: An empirical study of input-output and structural decomposition analysis. Energy Policy, 2014,73(10):401-415. |
[19] | ZHANG P P, ZHANG L X, TIAN X, et al. Urban energy transition in China: Insights from trends, socioeconomic drivers, and environmental impacts of Beijing. Energy Policy, 2018,117(1):173-183. |
[20] | OLANREWAJU O A, JIMOH A A, KHOLOPANE P A. Assessing the energy potential in the South African industry: A combined IDA-ANN-DEA (Index Decomposition Analysis-Artificial Neural Network-Data Envelopment Analysis) model. Energy, 2013,63:225-232. |
[21] | ZHA D L, ZHOU D Q, ZHOU P. Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis. Energy Policy, 2010,38(7):3377-3383. |
[22] | XU X Y, ANG B W. Index decomposition analysis applied to CO2 emission studies. Ecological Economics, 2013,93(5):313-329. |
[23] | ANG B W, XU X Y, SU B. Multi-country comparisons of energy performance: The index decomposition analysis approach. Energy Economics, 2015,47(1):68-76. |
[24] | 崔盼盼, 张艳平, 张丽君, 等. 中国省域隐含碳排放及其驱动机理时空演变分析. 自然资源学报, 2018,33(5):879-892. |
[ CUI P P, ZHANG Y P, ZHANG L J, et al. Analysis on the spatial and temporal evolution of indirect carbon emissions and its driving mechanism in China. Journal of Natural Resources, 2018,33(5):879-892.] | |
[25] | 李兰兰, 徐婷婷, 李方一, 等. 中国居民天然气消费重心迁移路径及增长动因分解. 自然资源学报, 2017,32(4):606-619. |
[ LI L L, XU T T, LI F Y, et al. Gravity center evolution paths and growth factor decomposition of residential natural gas consumption in China. Journal of Natural Resources, 2017,32(4):606-619.] | |
[26] | 孙倩, 汪鹏, 蔡国田, 等. 基于LMDI的城市能源消费总量指标评价模型研究. 生态经济, 2019,35(6):98-105. |
[ SUN Q, WANG P, CAI G T, et al. Research on evaluation model of urban energy consumption total indicators based on LMDI. Ecological Economy, 2019,35(6):98-105.] | |
[27] | 李慧芳, 聂锐. 中国能耗变动影响因素的LMDI分解. 统计与决策, 2018,34(13):135-138. |
[ LI H F, NEI R. LMDI decomposition of influencing factors of energy consumption changes in China. Statistics and Decision, 2018,34(13):135-138.] | |
[28] | 北京市人民政府. 北京市人民政府关于印发北京市2013—2017年清洁空气行动计划的通知. http://www.beijing.gov.cn/zhengce/zfwj/zfwj/szfwj/201905/t20190523_72673.html, 2013-09-12. |
[ The People's Government of Beijing Municipality. Notice of the Beijing municipal people's government on the issuance of the clean air action plan for Beijing from 2013 to 2017. http://www.beijing.gov.cn/zhengce/zfwj/zfwj/szfwj/201905/t20190523_72673.html, 2013-09-12.] | |
[29] | CULLEN J M, ALLWOOD J M. The efficient use of energy: Tracing the global flow of energy from fuel to service. Energy Policy, 2010,38(1):75-81. |
[30] | MA L, ALLWOOD J M, CULLEN J M, et al. The use of energy in China: Tracing the flow of energy from primary source to demand drivers. Energy, 2012,40(1):174-188. |
[31] | ZHANG M, WANG W. Using an energy flow chart to analyze Jiangsu province's energy balance. Renewable Energy, 2012,39(1):307-312. |
[32] | CHONG C H, MA L, LI Z, et al. Logarithmic mean divisia index (LMDI) decomposition of coal consumption in China based on the energy allocation diagram of coal flows. Energy, 2015,85(1):366-378. |
[33] | ANG B W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy, 2005,33(7):867-871. |
[34] | 张伟, 张金锁, 孙再罗. 基于LMDI指数分析的中国煤炭消费增长分解研究. 中国矿业, 2014,23(8):42-45. |
[ ZHANG W, ZHANG J S, SUN Z L. Decomposition research of the coal consumption increment of China based on LMDI. China Mining Magazine, 2014,23(8):52-45.] | |
[35] | 章景皓. 基于能流图和LMDI的区域能源消费分解方法及案例研究. 北京: 清华大学, 2015. |
[ ZHANG J H. Research on decomposition method and case studies of regional energy consumption growth based on energy flow diagram and LMDI. Beijing: Tsinghua University, 2015.] |
[1] | 陈凡, 郭剑, 栗欣如, 李建平. 农业产业化经营项目空间分布及驱动因素分析——以京津冀地区为例[J]. 自然资源学报, 2021, 36(2): 513-524. |
[2] | 阎晓, 涂建军. 黄河流域资源型城市生态效率时空演变及驱动因素[J]. 自然资源学报, 2021, 36(1): 223-239. |
[3] | 郭付友, 佟连军, 仇方道, 许丽梦. 鲁南经济带城乡绿色发展效率时空分异及驱动因素识别[J]. 自然资源学报, 2020, 35(8): 1972-1985. |
[4] | 赵玉峰, 罗专溪, 于亚军, 陈迎辉, 张树刚, 张清华. 京津冀西北典型区域地下水位时空演变及驱动因素[J]. 自然资源学报, 2020, 35(6): 1301-1313. |
[5] | 宋洋, 朱道林, 张立新, 张晖. 2000年以来黄河流域土地市场化时空格局演变及驱动因素[J]. 自然资源学报, 2020, 35(4): 799-813. |
[6] | 田华征, 马丽. 中国工业碳排放强度变化的结构因素解析[J]. 自然资源学报, 2020, 35(3): 639-653. |
[7] | 梁建飞, 陈松林. 环境约束下的福建省城市建设用地利用效率及驱动因素[J]. 自然资源学报, 2020, 35(12): 2862-2874. |
[8] | 崔守军, 蔡宇, 姜墨骞. 重大技术变革与能源地缘政治转型[J]. 自然资源学报, 2020, 35(11): 2585-2595. |
[9] | 何则, 周彦楠, 刘毅. 2050年中国能源消费结构的系统动力学模拟——基于重点行业的转型情景[J]. 自然资源学报, 2020, 35(11): 2696-2707. |
[10] | 王长建, 汪菲, 叶玉瑶, 张新林, 苏泳娴, 姜璐, 李增, 张虹鸥. 基于供需视角的中国煤炭消费演变特征及其驱动机制[J]. 自然资源学报, 2020, 35(11): 2708-2723. |
[11] | 彭凯锋, 蒋卫国, 邓越. 武汉城市圈湿地受损程度识别及驱动因素分析[J]. 自然资源学报, 2019, 34(8): 1694-1707. |
[12] | 亢小语, 张志强, 陈立欣, 冷曼曼, 杨锋伟. 黄土高原中尺度流域基流变化驱动因素分析[J]. 自然资源学报, 2019, 34(3): 563-572. |
[13] | 孙才志, 白天骄, 吴永杰, 赵良仕. 要素与效率耦合视角下中国人均灰水足迹驱动效应研究[J]. 自然资源学报, 2018, 33(9): 1490-1502. |
[14] | 崔盼盼, 张艳平, 张丽君, 孙莹莹, 郑智成, 王伟, 徐晓霞. 中国省域隐含碳排放及其驱动机理时空演变分析[J]. 自然资源学报, 2018, 33(5): 879-892. |
[15] | 赵峰侠, 徐明. 生产力与生物多样性关系的研究进展[J]. 自然资源学报, 2018, 33(11): 2046-2056. |
|