露天煤矿复垦土壤活性有机碳影响因素及管控策略
多鑫(1996- ),男,山西运城人,硕士,研究方向为露天煤矿复垦土壤有机碳。E-mail: dx_duo@163.com |
收稿日期: 2023-12-25
修回日期: 2024-04-24
网络出版日期: 2024-11-15
基金资助
山西省基础研究计划项目(20210302123403)
山西省科技重大专项计划项目(202201140601028)
The influencing factors and control strategies of soil labile organic carbon in opencast coal mine reclamation
Received date: 2023-12-25
Revised date: 2024-04-24
Online published: 2024-11-15
为揭示露天矿区土壤活性有机碳(LOC)时空分布规律及影响机制,以平朔露天煤矿9种复垦模式和4个复垦年限为研究对象,采用单因素方差分析研究了LOC时空分布规律;基于结构方程模型和冗余分析探讨了LOC影响因素。结果发现:(1)LOC有明显表聚特征;(2)土地复垦能显著增加LOC含量,不同复垦模式LOC含量差异显著,呈现混交林>原地貌>纯林的现象,油松×刺槐×榆树恢复效果最佳;(3)LOC含量随复垦时间延长而显著增加,但复垦26年后LOC/SOC未达到原地貌水平;(4)直接影响LOC的因素依次为土壤理化性质>土层深度>复垦时间>复垦模式;(5)土壤环境因子对LOC的总解释度为68.52%,其中黏粒、AK及SW对LOC的解释度高于其他因子。结果表明:植被重建时应采取多层次、多样化的植被种植策略,适当增加本地优势植被比例,并注重保护原有微生物群落;改善土壤质地、加强水肥管理是促进矿区生态恢复的关键。本文可为露天矿区复垦提供固碳增汇策略和相应理论支持。
多鑫 , 徐占军 , 杨璐 , 祁强强 , 羊华东 , 李哲 . 露天煤矿复垦土壤活性有机碳影响因素及管控策略[J]. 自然资源学报, 2024 , 39(11) : 2735 -2752 . DOI: 10.31497/zrzyxb.20241114
In order to reveal the spatiotemporal distribution patterns and influencing mechanisms of soil labile organic carbon (LOC) in the reclamation area of opencast coal mines, we selected nine different vegetation combinations and sample plots spanning four reclamation years from the soil dumping grounds in the Pingshuo opencast mining area, using an undisturbed elm forest as a control area. We employed one-way ANOVA to investigate the distribution patterns of soil LOC within the sample plots. Furthermore, we explored the influencing factors of soil LOC using Structural Equation Modeling and Redundancy analysis methods. and further examined the functional relationship between soil physicochemical properties and soil LOC through regression analysis. The results indicate that: (1) Soil LOC in various areas has obvious surface aggregation characteristics and the trend decreases with the increase of soil depth. (2) Land reclamation can significantly increase soil LOC content, but significant differences in soil LOC exist under various reclamation modes, with mixed forests>original landforms>pure forests, and the Pinus tabulaeformis×Robinia pseudoacacia×Elm tree combination demonstrating the most effective restoration compared to other soil LOC. (3) Soil LOC significantly increases with reclamation time, and the recovery rate of soil LOC is higher than that of soil organic carbon, but even after 26 years, LOC/SOC levels do not reach those of the original landform. (4) Direct factors affecting soil LOC are soil physicochemical properties>soil depth>reclamation time>reclamation mode. (5) The overall explanatory power of soil environmental factors for soil LOC is 68.52%. The order of explanatory power is clay>available potassium>soil moisture content>sand>pH>powder>alkaline nitrogen>bulk density>available phosphorus. The explanatory power of clay particles, available potassium, and water content for LOC is higher than other factors. The above results indicate that multi-level and diversified vegetation planting strategies should be adopted during vegetation reconstruction, with an appropriate increase in the proportion of local advantageous vegetation and attention paid to protecting the original microbial community of the reclaimed land. At the same time, improving soil texture and strengthening water and fertilizer management are key to promoting ecological restoration in mining areas. The above research can provide carbon sequestration and sink enhancement proposals and corresponding theoretical support for the reclamation of opencast mining areas.
表1 样地信息Table 1 Information of the sampling sites |
样地 | 海拔 /m | 坡度 /(°) | 株高 /m | 郁闭度 | 植被配置模式 | 土壤质地 | 复垦 年限/年 | 作物长势及地被情况 |
---|---|---|---|---|---|---|---|---|
RCP | 1376 | 22 | 5.75 | 0.71 | 刺槐×柠条×油松 | 砂壤土 | 26 | 刺槐、油松、柠条隔行间种,行距2 m,刺槐、柠条株距1 m,油松株距5 m |
REA | 1380 | 6 | 6.89 | 0.77 | 刺槐×榆树×臭椿 | 粉土 | 26 | 刺槐、榆树、臭椿隔行间种,株行距均1 m,密度为2250 株/hm2 |
SP | 1391 | 4 | 4.97 | 0.68 | 杏树×油松 | 砂粉土 | 26 | 杏树、油松隔行种植,行距2 m,杏树株距1 m,油松株距5 m,密度2466株/hm2 |
RM | 1423 | 8 | 6.77 | 0.55 | 纯刺槐 | 砂壤土 | 26 | 株行距1 m,密度1900株//hm2,林下草本白莲蒿(Artemisia sacrorum Ledeb)、扁穗冰草(Agropyron cristatum L.)、狭苞斑种草(Bothri ospermum kusnezowii Bge)、披碱草 |
CM | 1451 | 27 | 2.33 | 0.31 | 纯柠条 | 砂壤土 | 26 | 柠条均高 2.2 m,草本盖度40% |
NE | 1420 | 5 | 4.64 | 0.47 | 沙枣×榆树 | 砂壤土 | 26 | 沙枣、榆树隔行种植,株行距1 m,林下草本包括地梢瓜(Cynanchum thesioides K.)、牻牛儿苗(Erodium stephanianum Willd)、无芒雀麦(Bromus inermis Layss) |
RPE | 1454 | 17 | 7.13 | 0..81 | 刺槐×油松×榆树 | 砂壤土 | 26 | 刺槐、榆树株行距1 m,油松株距5 m,隔行间种,密度2275株//hm2 |
RCN | 1450 | 6 | 3.55 | 0.46 | 刺槐×柠条×沙棘 | 砂壤土 | 26 | 刺槐、柠条、沙棘隔行种植,株行距均1 m,平均高度为6.5 m、2 m、1.8 m |
YM | 1359 | 2 | 4.67 | 0.44 | 纯杨林 | 砂壤土 | 26 | 株行距2 m,枯枝落叶层厚度3㎝,林下草本包括披碱草、白莲蒿、西北针茅(Stipa sareptana Becher)等 |
H11 | 1450 | 3 | 1.22 | 0.17 | 沙棘 | 砂粉土 | 11 | 样地位于内排土场,株距2 m,行距1 m,林下草本稀疏 |
H15 | 1450 | 3 | 1.78 | 0.25 | 沙棘 | 砂粉土 | 15 | 内排土场,株距2 m,行距1 m,草本为西北针茅、扁穗冰草、白莲蒿等 |
H20 | 1421 | 6 | 2.15 | 0.35 | 沙棘 | 粉土 | 20 | 内排土场,株行距1 m,草本有披碱草、硬质早熟禾(Poa sphondylodes Trin)、西北针茅、黄花蒿(Artemisia annua Linn)等 |
H26 | 1487 | 4 | 2.43 | 0.41 | 沙棘 | 砂壤土 | 26 | 西排土场,株行距1 m,林下草本有狗尾草(Setaria faberii Herrm)、拂子茅(Calamagro stis epigeios Linn)、硬质早熟禾等 |
UD | 1255 | 6 | 5.47 | 0.49 | 榆树 | 砂壤土 | — | 安太堡工业园区原始地貌榆树林地,株间距约4 m,林分密度为1730株//hm2 |
表2 土壤理化性质测定Table 2 Determination of soil physical and chemical properties |
样地 | 土层 深度/cm | 物理性质 | 化学性质 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BD /(g/cm3) | SW/% | Sand /% | Silt /% | Clay /% | pH | AN /(mg/kg) | AP /(mg/kg) | AK /(mg/kg) | SOC /(g/kg) | |||
RCP | 0~20 | 1.35±0.04CDEb | 11.74±0.60Ea | 41.74 | 42.18 | 16.08 | 7.91±0.06Eb | 49.17±3.51Ba | 4.86±0.29Ca | 98.95±5.76Ea | 9.08±0.49Ca | |
20~40 | 1.57±0.05Ba | 9.62±1.29EFb | 42.83 | 41.56 | 15.61 | 8.28±0.08CDa | 17.11±0.68DEb | 5.12±0.47Ba | 83.83±13.96Aa | 4.50±0.36Cd | ||
REA | 0~20 | 1.41±0.26ABa | 13.11±0.89DEa | 38.62 | 47.64 | 13.74 | 8.26±0.04Ca | 24.31±0.33Eb | 4.49±0.28CDEa | 138.53±8.81BCa | 6.85±0.48Da | |
20~40 | 1.42±0.09Ca | 13.30±1.21Cb | 39.43 | 46.55 | 14.02 | 8.25±0.05EFa | 28.97±4.34Aa | 5.31±0.44Ca | 104.95±7.19Ab | 3.72±0.29EFb | ||
SP | 0~20 | 1.36±0.01CDa | 12.85±2.06ABa | 43.77 | 41.12 | 15.11 | 8.33±0.02Cd | 23.33±7.28Fa | 4.71±0.32Ea | 100.29±10.03Da | 3.99±0.56Ea | |
20~40 | 1.40±0.05Ca | 13.52±1.42Aa | 43.44 | 42.18 | 14.38 | 8.44±0.11Ba | 8.17±2.02Fa | 4.08±0.10Fa | 45.15±4.62DEb | 2.56±0.39EFb | ||
RM | 0~20 | 1.30±0.07CDEa | 10.26±0.50Ga | 42.32 | 42.63 | 15.05 | 8.40±0.31Aa | 73.06±5.68DEa | 6.73±0.48DE | 112.73±8.61Ea | 5.80±0.17Da | |
20~40 | 1.44±0.08Ca | 8.15±0.39Fb | 43.05 | 41.86 | 15.09 | 8.25±0.32Aa | 96.75±12.45Ca | 4.93±0.35DEa | 108.28±4.69ABCa | 3.74±0.06CDb | ||
CM | 0~20 | 1.22±0.16Ga | 10.61±0.59FGa | 42.84 | 42.55 | 14.61 | 8.40±0.09Ba | 29.33±2.75Fb | 5.35±0.49Bb | 107.39±5.36Ea | 4.32±0.58Ea | |
20~40 | 1.26±0.16Da | 8.72±0.27Fb | 43.90 | 40.32 | 15.78 | 8.43±0.04BCa | 31.50±3.48Aa | 5.72±1.06Aa | 76.60±5.05Db | 2.19±0.24Fb | ||
NE | 0~20 | 1.42±0.17EFd | 13.58±0.91CDa | 40.58 | 41.63 | 17.79 | 7.98±0.07Ea | 44.78±3.17Da | 4.98±0.46CDa | 147.20±10.55ABa | 8.57±0.81Ba | |
20~40 | 1.64±0.09Aa | 10.84±0.57CDb | 41.27 | 41.98 | 16.75 | 8.12±0.05Fa | 32.28±2.43Ba | 4.73±0.31CDa | 86.28±3.91ABCb | 5.54±0.81Bb | ||
RPE | 0~20 | 1.20±0.11DEFa | 14.64±1.18BCa | 39.95 | 41.89 | 18.16 | 8.17±0.04Ca | 74.67±5.35Aa | 5.25±0.77Ca | 143.21±7.03Ca | 9.77±1.05Aa | |
20~40 | 1.39±0.10Ca | 10.48±0.87Db | 41.12 | 41.54 | 17.34 | 8.37±0.04BCa | 33.83±7.44Ab | 3.51±0.34Ea | 129.18±4.17ABb | 5.64±0.81Ab | ||
RCN | 0~20 | 1.34±0.18FGa | 14.21±1.57Aa | 39.94 | 42.43 | 17.63 | 8.24±0.02Cb | 54.28±3.75Ba | 4.18±0.25CDEa | 137.19±8.46Aa | 9.30±0.30Da | |
20~40 | 1.43±0.05Ca | 13.75±1.83Bb | 40.76 | 42.57 | 16.67 | 8.37±0.01BCa | 16.72±3.74EFb | 3.26±0.57Fb | 76.50±6.43BCb | 5.73±0.39EFb | ||
YM | 0~20 | 1.38±0.05BCb | 14.25±0.83EFa | 41.07 | 44.35 | 14.58 | 8.21±0.03Db | 31.72±3.33Ea | 5.68±0.46Bb | 96.50±11.03Da | 4.13±0.41Ea | |
20~40 | 1.52±0.06Ba | 11.05±0.63CDa | 41.73 | 42.36 | 15.91 | 8.45±0.05BCa | 14.39±2.93DEa | 6.53±0.67Aa | 70.49±4.62Cb | 3.19±0.50Fb | ||
UD | 0~20 | 1.43±0.14Aa | 14.95±0.61Aa | 42.65 | 40.37 | 16.98 | 8.06±0.01Db | 42.39±2.93Ca | 5.80±0.71Aa | 109.85±5.29Da | 6.17±0.17Da | |
20~40 | 1.46±0.01Cd | 13.17±0.93Aa | 42.83 | 41.26 | 15.91 | 8.24±0.02DEa | 28.39±9.06CDb | 3.38±1.13Fb | 61.82±7.78Eb | 4.98±0.35DEa | ||
H11 | 0~20 | 1.47±0.12b | 11.85±1.52a | 45.77 | 44.98 | 9.25 | 8.27±0.09c | 20.33±1.29a | 3.02±0.51a | 57.26±7.63a | 1.41±0.27a | |
H15 | 0~20 | 1.53±0.08c | 15.25±0.73c | 43.26 | 43.45 | 13.29 | 8.17±0.06b | 27.49±3.21b | 4.68±0.34b | 82.04±4.78b | 2.79±0.39b | |
H20 | 0~20 | 1.42±0.10ab | 14.36±0.61b | 42.61 | 43.38 | 14.01 | 7.96±0.13a | 43.88±3.64c | 5.53±0.41c | 90.78±3.32c | 3.97±0.16c | |
H26 | 0~20 | 1.37±0.09a | 16.63±1.31d | 41.76 | 42.32 | 15.29 | 7.94±0.09a | 54.55±3.36d | 6.52±0.53d | 101.84±3.03c | 5.53±0.43d |
注:数据格式为平均值±标准差。大写字母表示不同模式下同一土层指标差异显著;小写字母表示同一模式下不同土层间指标差异显著(α=0.05,n=3)。 |
表3 土壤活性有机碳的变化解释变量冗余分析Table 3 Redundancy analysis of explanatory variables for changes in soil labile organic carbon |
排序轴 | 第Ⅰ轴 | 第Ⅱ轴 | 第Ⅲ轴 | 第Ⅳ轴 |
---|---|---|---|---|
特征值 | 0.6326 | 0.0458 | 0.0060 | 0.0008 |
解释变量对响应变量的轴解释率/% | 63.26 | 4.58 | 0.60 | 0.08 |
解释变量(累积) | 63.26 | 67.84 | 68.44 | 68.52 |
伪正则相关 | 0.8808 | 0.4233 | 0.4384 | 0.5272 |
解释的拟合偏差(累积) | 94.57 | 98.95 | 99.86 | 99.97 |
总特征值 | 1.00 |
[1] |
|
[2] |
贺佑国, 刘文革, 李艳强. 世界煤炭工业发展综论. 中国煤炭, 2021, 47(1): 126-135.
[
|
[3] |
|
[4] |
李德山, 赵颖文, 李琳瑛. 煤炭资源型城市环境效率及其环境生产率变动分析: 基于山西省11个地级市面板数据. 自然资源学报, 2021, 36(3): 618-633.
[
|
[5] |
李国志, 张景然. 矿产资源开发生态补偿文献综述及实践进展. 自然资源学报, 2021, 36(2): 525-540.
[
|
[6] |
白中科, 周伟, 王金满, 等. 再论矿区生态系统恢复重建. 中国土地科学, 2018, 32(11): 1-9.
[
|
[7] |
胡振琪. 再论土地复垦学. 中国土地科学, 2019, 33(5): 1-8.
[
|
[8] |
许闯胜, 刘伟, 宋伟, 等. 差异化开展国土空间生态修复的思考. 自然资源学报, 2021, 36(2): 384-394.
[
|
[9] |
胡振琪. 矿山复垦土壤重构的理论与方法. 煤炭学报, 2022, 47(7): 2499-2515.
[
|
[10] |
|
[11] |
|
[12] |
杨漫, 朱月, 徐长友, 等. 通辽露天煤矿排土场恢复初期土壤碳组分变化及影响因素. 环境工程学报, 2023, 17(10): 3400-3407.
[
|
[13] |
牛丽楠, 邵全琴, 宁佳, 等. 黄土高原生态恢复程度及恢复潜力评估. 自然资源学报, 2023, 38(3): 779-794.
[
|
[14] |
雷少刚, 卞正富, 杨永均. 论引导型矿山生态修复. 煤炭学报, 2022, 47(2): 915-921.
[
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展. 生态学报, 2014, 34(17): 4829-4838.
[
|
[21] |
郑鑫, 王甫园, 王开泳. 游憩导向下国土空间生态修复的理论与模式. 自然资源学报, 2021, 36(8): 1923-1936.
[
|
[22] |
王金满, 张丽娜, 冯宇, 等. 基于CT扫描技术预测露天煤矿区不同压实土壤水分特征曲线. 煤炭学报, 2022, 47(3): 1296-1305.
[
|
[23] |
毕银丽, 宋雅宁, 白雪蕊, 等. DSE及其代谢物对紫花苜蓿促生作用及其矿区生态修复潜力. 煤炭科学技术, 2023, 51(12): 90-99.
[
|
[24] |
樊文华, 白中科, 李慧峰, 等. 复垦土壤重金属污染潜在生态风险评价. 农业工程学报, 2011, 27(1): 348-354.
[
|
[25] |
|
[26] |
|
[27] |
|
[28] |
王旭东. 复垦年限及地形地貌对于矿区土壤养分影响研究. 北京: 中国地质大学, 2016.
[
|
[29] |
何庆, 张风宝, 李潼亮, 等. 露天煤矿复垦区土壤有机碳含量变化归因解析. 干旱区资源与环境, 2023, 37(3): 62-67.
[
|
[30] |
原野. 典型露天煤矿复垦生态系统碳固存研究:机理与效应. 北京: 中国地质大学, 2018.
[
|
[31] |
耿冰瑾, 王舒菲, 曹银贵, 等. 山西平朔露天矿区不同年限复垦地植被重建特征对比分析. 生态学报, 2022, 42(8): 3400-3419.
[
|
[32] |
何海龙, 齐雁冰, 吕家珑, 等. 中国土壤质地分类系统的发展与建议修订方案. 农业资源与环境学报, 2023, 40(3): 501-510.
[
|
[33] |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 1999.
[
|
[34] |
|
[35] |
|
[36] |
周义贵, 郝凯婕, 李贤伟, 等. 川西亚高山不同土地利用类型对土壤微生物量碳动态特征的影响. 自然资源学报, 2014, 29(11): 1944-1956.
[
|
[37] |
|
[38] |
张智勇, 王瑜, 艾宁, 等. 陕北黄土区不同植被类型土壤有机碳分布特征及其影响因素. 北京林业大学学报, 2020, 42(11): 56-63.
[
|
[39] |
|
[40] |
关炳昌. 植被配置模式对矿区复垦土壤有机碳影响. 太原: 山西大学, 2019.
[
|
[41] |
|
[42] |
|
[43] |
文月荣, 党廷辉, 唐骏, 等. 不同林地恢/复模式下露天煤矿排土场土壤有机碳分布特征. 应用生态学报, 2016, 27(1): 83-90.
[
|
[44] |
苏卓侠, 苏冰倩, 上官周平. 植物凋落物分解对土壤有机碳稳定性影响的研究进展. 水土保持研究, 2022, 29(2): 406-413.
[
|
[45] |
原野, 高国卿, 高嫄, 等. 黄土区大型露天煤矿复垦24a土壤碳氮组分特征. 农业工程学报, 2021, 37(4): 167-174.
[
|
[46] |
|
[47] |
|
[48] |
张振佳, 曹银贵, 王舒菲, 等. 平朔黄土露天矿区复垦地表层土壤微生物与酶活性分析. 生态学报, 2021, 41(1): 110-123.
[
|
[49] |
|
[50] |
张旭升, 郭鹏杰, 张瀛澜, 等. 不同植被恢复模式下矿区复垦土壤真菌群落组成及多样性. 菌物学报, 2022, 41(11): 1831-1844.
[
|
[51] |
王洪丹, 王金满, 曹银贵, 等. 黄土区露天煤矿排土场土壤与地形因子对植被恢复的影响. 生态学报, 2016, 36(16): 5098-5108.
[
|
[52] |
王蕾, 张宇婕, 于亚军. 煤矸山复垦林草地土壤有机碳差异及其影响因素. 生态学杂志, 2019, 38(12): 3717-3722.
[
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
杨璐. 露天煤矿复垦土壤基本理化特征及有机碳库组分对复垦模式及复垦进程的响应. 晋中: 山西农业大学, 2020.
[
|
[59] |
|
[60] |
|
/
〈 |
|
〉 |