中国城乡居民收入差距对碳排放强度的作用机制——基于面板数据的实证分析
闫东升(1990- ),男,河南项城人,博士,讲师,研究方向为城市发展与区域规划。E-mail: yds1223@163.com |
收稿日期: 2022-11-07
修回日期: 2023-03-02
网络出版日期: 2023-09-07
基金资助
国家自然科学基金项目(42101183)
国家自然科学基金项目(41871209)
国家自然科学基金项目(41871119)
江苏省碳达峰碳中和科技创新专项项目(BK20220014)
Research on the mechanism of urban-rural residents income gap on carbon emission intensity: A panel data analysis
Received date: 2022-11-07
Revised date: 2023-03-02
Online published: 2023-09-07
中国经济从高速增长转向高质量发展阶段,协同实现城乡居民收入差距缩小与碳排放强度下降,是“公平”与“效率”兼顾的重要内涵。在构建城乡居民收入差距影响碳排放强度机制基础上,基于1998—2019年省级尺度面板数据,定量探讨中国城乡居民收入差距对碳排放强度的影响,并采用中介效应模型、调节效应模型探析作用机制。结果表明:城乡居民收入差距扩大带来碳排放强度上升,且经过多重稳健性检验依然成立。在影响机制分析发现,城乡居民收入差距通过影响城镇化、抑制创新发展、强化资源错配等带来碳排放强度增加,且市场化水平、政府行为在二者关系中呈现显著调节效应。城乡居民收入差距的碳排放强度效应呈现显著时空异质性:一方面,表现为1998—2011年显著正效应与2012—2019年不显著负效应差异;另一方面,表现为东部不显著负效应、中西部显著正效应对比。在要素驱动的经济增长过程中,应发挥“有效市场”与“有为政府”协调作用,通过优化城镇化模式、提升创新发展质量、推动城乡一体化发展等,在进一步缩小城乡居民收入差距中实现“公平”与“效率”兼顾,助力中国经济高质量发展。
闫东升 , 孙伟 , 李平星 . 中国城乡居民收入差距对碳排放强度的作用机制——基于面板数据的实证分析[J]. 自然资源学报, 2023 , 38(9) : 2403 -2417 . DOI: 10.31497/zrzyxb.20230914
Since the reform and opening-up in the late 1970s, China's economy has continued to grow rapidly and has become the world's second largest economy. However, the long-term unbalanced development policy and the inefficient development model have brought many negative effects to China's economic and social development. Typically, the regional development gap dominated by the urban-rural residents income gap continues to expand, and the ecological environment is rapidly deteriorating, which is characterized by a sharp increase in the scale of carbon emissions. In the process of factor-driven economic growth, unreasonable factor allocation structure is one of the important factors that lead to the large urban-rural residents income gap and carbon emission intensity in China. China's economy has shifted from high-speed growth to high-quality development. Whether the urban-rural residents income gap and the carbon emission intensity can be reduced in coordination, has become an important connotation of both "equity" and "efficiency". By constructing the mechanism of urban-rural residents income gap affecting carbon emission intensity, this research quantitatively explores the effect of urban-rural residents income gap on carbon emission intensity based on provincial-level panel data from 1998 to 2019. On this basis, the mediation effect model and the moderation effect model are used to explore the mechanism of the urban-rural residents income gap affecting the carbon emission intensity. The results show that the widening of the urban-rural income gap leads to an increase in carbon emission intensity. And after multiple robustness tests, this conclusion is still significant. The analysis of the impact mechanism shows that the urban-rural income gap increases carbon emission intensity by affecting urbanization, innovation development, and resource misallocation, and the levels of marketization and government behavior have significant moderating effects. For a large country in rapid development with a vast territory and significant regional disparities, the effect of urban-rural residents income gap on carbon emission intensity exhibits significant spatial and temporal heterogeneity: On the one hand, there is a significant positive effect in 1998-2011 and no significant negative effect in 2012-2019. On the other hand, there is no significant negative effect in the east and a significant positive effect in the central and western regions. Therefore, we should give full play to the coordination role of "effective market" and "promising government", and achieve both "equity" and "efficiency" in narrowing the urban-rural residents income gap by optimizing the urbanization model, improving the quality of innovative development, and promoting the urban-rural integrated development. However, it must be emphasized that the formulation and implementation of relevant policies should fully consider the local development. For example, the eastern region should focus on optimizing the industrial structure, while the central and western regions should still focus on narrowing the urban-rural residents income gap through the reform of the income distribution system.
表1 基准模型回归结果①Table 1 Regression results of the benchmark model |
变量 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 |
---|---|---|---|---|---|---|
Gap | 0.657**(1.99) | -0.419(-0.30) | 1.273***(3.77) | -0.307(-0.23) | 0.973***(2.77) | -0.480(-0.36) |
Gap2 | 0.163(0.80) | -0.632***(-5.33) | -0.685***(-5.42) | |||
控制变量 | 不控制 | 不控制 | 部分控制 | 部分控制 | 控制 | 控制 |
时空效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
Constant | 3.480***(4.06) | 5.084**(2.34) | -2.146(-1.36) | 0.235(0.09) | 6.136**(2.06) | 8.246**(2.34) |
R2 | 0.113 | 0.087 | 0.202 | 0.195 | 0.386 | 0.381 |
N/个 | 660 | 660 | 660 | 660 | 660 | 660 |
注:括号内为t值,*、**、***分别表示在10%、5%、1%水平下显著,下同。 ① 鉴于经济发展水平与产业结构对城乡居民收入差距、碳排放强度的较大影响,在模型3、模型4中仅控制这两个变量。 |
表2 稳健性检验结果Table 2 Robustness test results |
量 | 模型1 | 模型2 | 模型3 | 模型4 |
---|---|---|---|---|
Gap | 7.046*(1.68) | 2.399***(3.21) | 0.970***(2.72) | 0.731***(29.55) |
SD | -0.0167(-0.05) | |||
控制变量 | 控制 | 控制 | 控制 | 控制 |
时空效应 | 控制 | 控制 | 控制 | 控制 |
Constant | 12.945***(5.27) | 85.504***(12.89) | 6.127**(2.05) | -0.0953(-0.77) |
R2 | 0.352 | 0.404 | 0.387 | — |
N/个 | 660 | 660 | 660 | 660 |
表3 中介效应检验结果Table 3 Regression results of mediating effect |
变量 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 | 模型7 | 模型8 | 模型9 |
---|---|---|---|---|---|---|---|---|---|
Gap | 0.973*** | 0.00104 | 0.968*** | 0.973*** | -0.154* | 0.945*** | 0.973*** | 0.0220 | 0.958*** |
(2.77) | (0.15) | (2.77) | (2.77) | (-1.95) | (2.68) | (2.77) | (0.61) | (2.73) | |
Urb | 5.100** | ||||||||
(2.56) | |||||||||
Inno | -0.186 | ||||||||
(-1.03) | |||||||||
Mis | 0.693* | ||||||||
(1.75) | |||||||||
控制变量 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
时空效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
Constant | 6.136** | 0.109* | 5.579* | 6.136** | 2.632*** | 6.626** | 6.136** | 1.059*** | 5.402* |
(2.06) | (1.80) | (1.88) | (2.06) | (3.93) | (2.20) | (2.06) | (4.36) | (1.80) | |
R2 | 0.386 | 0.121 | 0.386 | 0.386 | 0.575 | 0.387 | 0.386 | 0.583 | 0.330 |
N/个 | 660 | 660 | 660 | 660 | 660 | 660 | 660 | 600 | 600 |
表4 调节效应检验结果Table 4 Regression results of moderating effects |
变量 | 模型1 | 模型2 |
---|---|---|
Gap | 1.619***(3.74) | 1.174***(2.70) |
Mark | 0.0951**(2.35) | |
Gap×Mark | -0.0359**(-2.23) | |
Gov | 0.135**(2.51) | |
Gap×Gov | 0.0290**(2.33) | |
控制变量 | 控制 | 控制 |
时空效应 | 控制 | 控制 |
Constant | 1.919(0.58) | 3.548(1.08) |
R2 | 0.319 | 0.347 |
N/个 | 600 | 600 |
表5 异质性分析回归结果Table 5 Regression results of heterogeneity test |
变量 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 |
---|---|---|---|---|---|
Gap | 1.381***(2.64) | -0.310(-0.74) | -0.296(-1.00) | 1.131**(1.93) | 0.819**(2.12) |
控制变量 | 控制 | 控制 | 控制 | 控制 | 控制 |
时空效应 | 控制 | 控制 | 控制 | 控制 | 控制 |
Constant | 3.095(0.81) | -0.354(-0.07) | 4.248**(2.15) | 2.447***(3.67) | 1.117(0.15) |
R2 | 0.316 | 0.362 | 0.588 | 0.503 | 0.281 |
N/个 | 420 | 240 | 242 | 176 | 242 |
[1] |
杨寓涵. 收入差距促进了环境污染吗? 基于省级面板数据的实证检验. 云南财经大学学报, 2019, 35(5): 21-32.
[
|
[2] |
孙华臣, 孙丰凯. 城乡收入差距对碳排放影响的经验证据: 兼论“公平”何以提升“效率”. 宏观经济研究, 2016, (1): 47-58.
[
|
[3] |
|
[4] |
井波, 倪子怡, 赵丽瑶, 等. 城乡收入差距加剧还是抑制了大气污染?. 中国人口·资源与环境, 2021, 31(10): 130-138.
[
|
[5] |
|
[6] |
杨曼莉. 收入差距是否影响环境质量?. 中国人口·资源与环境, 2020, 30(4): 116-124.
[
|
[7] |
|
[8] |
|
[9] |
|
[10] |
胡雷. 城乡收入差距会影响二氧化碳排放吗? 基于IPAT扩展模型的实证研究. 城市与环境研究, 2015, (4): 87-99.
[
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
李在军, 尹上岗, 姜友雪, 等. 长三角经济增长与碳排放异速关系及形成机制. 自然资源学报, 2022, 37(6): 1507-1523.
[
|
[19] |
徐英启, 程钰, 王晶晶, 等. 中国低碳试点城市碳排放效率时空演变与影响因素. 自然资源学报, 2022, 37(5): 1261-1276.
[
|
[20] |
闫东升, 孙伟. 长江三角洲一体化区域扩容对城市碳排放强度的影响评估与机制. 资源科学, 2022, 44(7): 1358-1372.
[
|
[21] |
|
[22] |
陈坤秋, 龙花楼. 中国土地市场对城乡融合发展的影响. 自然资源学报, 2019, 34(2): 221-235.
[
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
郭王玥蕊, 张伯超. 二元经济要素错配的收入分配效应研究. 现代经济探讨, 2022, (6): 33-46.
[
|
[29] |
|
[30] |
刘春济, 高静. 地方经济增长的目标管理与资源错配. 商业研究, 2020, (10): 1-9.
[
|
[31] |
侯学博, 余国新, 李先东. 非牧用途使用与牧户草原流转行为. 自然资源学报, 2022, 37(1): 233-249.
[
|
[32] |
|
[33] |
|
[34] |
闫东升, 孙伟, 陈东, 等. 长江三角洲城镇化率与城乡收入差距的关系研究. 中国人口·资源与环境, 2021, 31(5): 28-36.
[
|
[35] |
周迪, 王雪芹. 中国碳排放效率与产业结构升级的耦合度及耦合路径. 自然资源学报, 2019, 34(11): 2305-2316.
[
|
[36] |
|
[37] |
|
[38] |
黎文勇, 杨上广, 吴玉鸣. 区域市场一体化对碳排放效益的影响研究: 来自长三角地区的空间计量分析. 软科学, 2018, 32(9): 52-55, 71.
[
|
[39] |
贺光烨, 吴晓刚. 市场化、经济发展与中国城市中的性别收入不平等. 社会学研究, 2015, 30(1): 140-165, 245.
[
|
[40] |
|
/
〈 |
|
〉 |