自然保护地空间布局与生态环境

人类活动对国家公园生态系统服务的影响——以祁连山国家公园为例

  • 王晓琪 ,
  • 赵雪雁
展开
  • 西北师范大学地理与环境科学学院,兰州 730070
赵雪雁(1971- ),女,甘肃武都人,博士,教授,博士生导师,研究方向为生态经济与区域发展。E-mail:

王晓琪(1995- ),女,甘肃秦安人,博士研究生,研究方向为生态经济与区域发展。E-mail:

收稿日期: 2022-04-06

  修回日期: 2022-08-26

  网络出版日期: 2023-04-11

基金资助

中国科学院A类战略性先导科技专项(XDA19040502)

国家自然科学基金项目(41971268)

第三次新疆综合科学考察项目(2021xjkk0905)

北京社会科学基金重点项目(17JDGLA035)

Impacts of human activities on ecosystem services in national parks: A case study of Qilian Mountain National Park

  • WANG Xiao-qi ,
  • ZHAO Xue-yan
Expand
  • College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China

Received date: 2022-04-06

  Revised date: 2022-08-26

  Online published: 2023-04-11

摘要

国家公园是最重要的自然保护地,在保护生态环境、促进经济和社会发展方面具有独特优势。定量分析人类活动对关键生态系统服务的影响,有助于国家公园规范保护和利用行为、提升可持续发展能力。运用InVEST模型、广义相加模型等方法,探究了祁连山国家公园人类活动与水源涵养、土壤保持、碳固存、生境质量等关键生态系统服务的时空格局,并分析了人类活动对生态系统服务的影响。研究发现:(1)2000—2019年祁连山国家公园人类活动强度逐渐减弱,整体呈西高东低的空间分布特征。(2)土壤保持量、碳固存量、生境质量均呈增加趋势,大致呈西低东高的分布格局,但水源涵养量呈先增后减趋势,并存在较明显的空间异质性,在整个研究期间变化显著。(3)人类活动与生境质量、碳固存、土壤保持存在负相关关系,表明人类活动强度的增加会直接影响国家公园生态系统服务的提供。建议未来国家公园的管理以及相关生态保护政策的制定应充分考虑人类活动的影响,并根据人类活动强度,精准实施分区管控、提高保护的有效性。

本文引用格式

王晓琪 , 赵雪雁 . 人类活动对国家公园生态系统服务的影响——以祁连山国家公园为例[J]. 自然资源学报, 2023 , 38(4) : 966 -982 . DOI: 10.31497/zrzyxb.20230409

Abstract

National parks are the most important nature reserves, which have unique advantages in protecting the ecological environment, and promoting economic and social development. Quantitative analysis of the impact of human activities on key ecosystem services, and scientific assessment of the main existing problems can help national parks regulate their protection and utilization behavior and enhance their capacity for sustainable development. In this study, we used InVEST model and generalized additive model to explore the spatio-temporal patterns of human activities and key ecosystem services, including water conservation, soil conservation, carbon sequestration and habitat quality, and analyzed the impacts of human activities on ecosystem services in Qilian Mountain National Park. The results showed that: (1) The intensity of human activities in the study area gradually decreased from 2000 to 2019, the overall spatial distribution characteristics are high in the west and low in the east. (2) Soil conservation, carbon sequestration and habitat quality all showed an increasing trend, with a distribution pattern of low in the west and high in the east. However, the amount of water conservation increased first and then decreased, and there was obvious spatial heterogeneity, which changed significantly during the study period. (3) There was a negative correlation between human activities and habitat quality, carbon sequestration and soil conservation. The results indicate that the increase of human activity intensity will directly affect the provision of key ecosystem services in national parks. It is suggested that the future management of national parks and the formulation of related ecological protection policies should fully consider the impact of human activities. According to the intensity of human activities, targeted zoning management and control will be implemented to improve the effectiveness of protection.

21世纪以来,全球人口激增、经济快速发展、人类活动强度及其对自然资源需求的日益增加,对自然生态系统造成了极大压力[1]。特别是在重点生态功能区,城市化、交通建设、过度放牧等高强度的人类活动导致草地退化、湿地减少等,极大地改变了生态系统的结构和功能,致使生态系统服务锐减,生物多样性丧失、水土流失、土地沙漠化等生态环境问题不断[2,3]。研究也表明,过去的50年里,人类活动已经影响了全球60%的生态系统[4],且全球1/3的自然保护地正承受着巨大的人类活动压力[5],这不仅对生态系统及其生态系统服务的供给造成了极大影响,而且严重威胁着人类的生存与可持续发展[6]。因此,降低人类活动对生态系统的负面影响、保护生态环境并实现可持续发展已成为全球共识。联合国人类环境大会、环境与发展大会、国际生态系统健康大会均提出要关注人类对环境的影响;千年发展目标、可持续发展目标也提出保护、恢复和促进可持续利用生态系统,确保环境的可持续能力,协调好人类活动与自然环境的关系[7];中国政府也实施了退耕还林、天然林保护、三北防护林等一系列生态保护和恢复工程,并提出要“建立以国家公园为主体的自然保护地体系”,以促进生物多样性和生态系统保护[8]。但中国国家公园建设仍处于初级阶段,目前仍面临着农牧生产、矿产开采、能源开发、道路修建等人类活动的干扰,保护与发展的矛盾较为突出[9]。当前,亟需厘清生态文明背景下人类活动对国家公园生态系统服务的影响,为指导自然资源的科学管理和合理利用、协调人地耦合系统提供借鉴。
人类活动是衡量人类对自然环境作用程度的重要指标,相关研究受到国内外学者越来越多的关注,主要体现在人地关系分析、生态环境效应评价、景观格局变化等方面。已有研究多涉及对人类活动的评价,评价方法多集中在两个方面,一是侧重对人类活动本身的基于压力的评估[10,11],多采用基于权重的多指标叠加分析方法、人类足迹指数、生态足迹指数、环境扰动指数等[12-14];二是从人类活动引起的状态变化出发量化人类活动强度[15],涉及土地利用变化、生态系统服务变化或多个状态因子的变化等角度[16],主要采用人类活动强度指数、景观发展强度指数、Modis全球干扰指数等进行评估[17,18]。生态系统服务是人类从生态系统功能中直接或间接获取的效益[19],对人类福祉至关重要,是研究人与环境关系的重要切入点[20]。相关研究主要涉及生态系统服务的供给与价值评估[21]、生态系统服务供需关系及供需不匹配[22,23]、生态系统服务权衡/协同关系[24,25]等多个方面,现有研究主要采用价值量评估法、物质量评估法、能值评估法等方法[26],对森林、草地、农田、湿地等不同生态系统展开研究。目前,仅有少部分学者探究了人类活动影响下的生态系统服务变化以及二者关系的时空关联/格局[27,28]。研究发现,人类活动是影响生态系统服务的重要驱动力[29]。土地利用作为人类活动的主要表现形式,其变化对生态系统服务产生了积极或消极的影响[30]。其中,过度放牧、交通设施、矿产资源过度开采等高强度人类活动导致草地退化、城市化以及湿地向耕地转化等,极大地改变了生态系统的结构和功能,减少了生态系统服务供给,严重损害人类福祉[31,32]。总体来看,现有研究针对人类活动、生态系统服务分别展开了大量研究,但对二者相互作用关系的研究相对较少,尤其较少考察人类活动对重要生态功能区关键生态系统服务影响的动态性与差异性。因此,亟需从较长时间序列维度出发,厘清人类活动对国家公园生态系统服务的影响。
祁连山国家公园是西北地区重要的水源地和生物多样性保护的优先区域,在维护生态平衡、保障径流补给、维持区域可持续发展等方面发挥着重要作用。草地、森林、湿地等资源分布广泛,当地的自然资源特别是林草资源是农牧民赖以生存的基本生产资料。但长期以来,生态保护与经济发展的矛盾比较突出,受气候变化、超载放牧、人为破坏和保护手段滞后等多种因素的共同影响,出现了诸多生态环境问题。生态环境的恶化不仅制约着草原畜牧业的发展,更严重影响生态系统的稳定性及生态系统服务的可持续供给,进而阻碍当地居民福祉及实现可持续生计,直接威胁到区域乃至国家的生态安全。鉴于此,本文以祁连山国家公园为例,分析2000—2019年人类活动与生态系统服务的时空演化特征,并利用广义相加模型评价人类活动对生态系统服务的影响,对制定和实施生态环境保护政策、促进区域可持续发展具有重要意义。

1 研究方法与数据来源

1.1 研究区概况

祁连山国家公园地处青藏、蒙新、黄土三大高原交汇地带的祁连山北麓,位于甘肃、青海两省的交界处,是国家重点生态功能区之一(图1)。总面积为5.02×104 km2,包括甘肃祁连山国家级自然保护区、甘肃盐池湾国家级自然保护区、甘肃天祝三峡国家森林公园、青海仙米国家森林公园、青海祁连黑河源国家湿地公园等5处国家级自然保护地,青海祁连山省级自然保护区、甘肃肃南马蹄寺省级森林公园、甘肃冰沟河省级森林公园等3处省级自然保护地。地形以高山、盆地为主,海拔为4000~5000 m;属高原大陆性气候,年平均气温在4 ℃以下,降水主要集中在5-9月,年降水量在400 mm左右。复杂的地形和气候特征使区内生态系统独特,森林、草原、荒漠、湿地、冰川等景观均有分布,黑河、八宝河、托勒河、疏勒河、党河、石羊河、大通河等河流广布,野生动植物资源丰富,是中国西部重要的生态安全屏障。
图1 研究区位置

注:本图基于自然资源部标准地图服务系统下载的标准地图制作,底图无修改,下同。

Fig. 1 Location of the study area

2017年9月,祁连山国家公园正式设立,主要目标是保护祁连山生物多样性和自然生态系统的原真性、完整性。共涉及14个县(市、区、场)45个乡(镇)的246个行政村(牧委会),常住人口约5.46万人,以藏、蒙古、裕固族等游牧民族为主。当地居民仍主要从事放牧业、种植业等传统的生计活动,生产方式落后,产业结构单一;居民受教育水平较低,家庭人均收入低,发展替代生计的途径少,对草原、森林等自然资源的传统利用是其生存和发展的基础[33]。在气候变化、超载放牧、乱采滥挖等多种因素的共同作用下,出现了冰川退缩、水源涵养功能减弱、植被严重退化、生物多样性锐减、水土流失加剧等生态环境问题。因此,评估人类活动特征及其对关键生态系统服务的影响,对实现区域可持续发展至关重要。

1.2 数据来源与预处理

2000年、2005年、2010年、2015年、2019年的土地利用数据来自于中国科学院资源环境科学数据中心(http://www.resdc.cn)的中国土地覆被栅格数据,与野外调查资料进行对比,发现遥感解译精度为95.7%[34,35],并根据中国土地利用/土地覆盖数据的分类系统,结合研究区实际情况,将土地覆盖类型划分为耕地、林地、草地、水域、湿地、农村居民点、其他建设用地及未利用地8类。气象数据包括降水量、潜在蒸散量等,均来自于国家气象科学数据中心(http://data.cma.cn/)的中国陆地气候数据日值数据集v3.0,采用ANUSPLIN软件进行空间插值。土壤数据来自于寒旱区科学大数据中心(http://bdc.casnw.net/index.shtml)。DEM数据来源于地理空间数据云(http://www.gscloud.cn/),在ArcGIS 10.7中进行镶嵌、裁剪和填洼处理。研究区矢量边界数据来源于祁连山国家公园官方网站(http://www.forestry.gov.cn/qls/index.html)。将所有栅格数据重采样为100 m×100 m,投影坐标系统一转换为Albers_Conic_Equal_Area_Conic。

1.3 研究方法

1.3.1 人类活动强度指数

人类活动是指一切人类行为触及生物圈的过程,主要表现为农田开垦、居民点修建、矿产开采、工矿建设、能源开发、旅游开发等[11-13]。本文从人与自然关系视角出发,将人类活动定义为人类为满足自身生存和发展对自然环境所采取的各种开发、利用与保护行为的总称[36]。这些人类活动会导致土地覆盖发生变化,改变当地生态系统的原始特性,进而显著影响生态系统服务的供给。参考已有研究[37],取Lohani清单法、Leopold矩阵法和Delphi法三种方法的平均值作为人类活动强度系数(表1),采用人类活动强度指数(HAI)[36]来分析2000—2019年祁连山国家公园人类活动的时空变化特征。根据已有研究和研究区特征,将人类活动强度划分为四个等级,即低强度(HAI≤0.2)、较低强度(0.2<HAI≤0.4)、中强度(0.4<HAI≤0.6)和较高强度(0.6<HAI≤0.8),计算公式为:
H A I = i = 1 N A i P i / T A
式中:N为土地覆盖类型数量(类);Ai为第i种地类所反映的人类活动强度系数;Pi为土地覆盖类型;TA为土地利用总面积(m2)。
表1 不同人类活动类型的强度系数

Table 1 Intensity coefficients of different types of human activity

计算方法 耕地 林地 草地 水域 湿地 农村居民点 其他建设用地 未利用地
Lohani 0.57 0.12 0.09 0.22 0.17 0.92 0.96 0.09
Leopold 0.61 0.14 0.07 0.215 0.15 0.94 0.94 0.05
Delphi 0.65 0.11 0.08 0.24 0.16 0.96 0.95 0.04
平均值 0.61 0.12 0.08 0.225 0.16 0.94 0.95 0.06

1.3.2 生态系统服务评估

InVEST模型是由斯坦福大学、大自然保护协会、世界自然基金会共同研发的评估模型[36],旨在通过模拟不同土地覆盖情景下生态系统服务物质量和价值量的变化,为决策者权衡人类活动的效益和影响提供科学依据。本文选择具有普适性的水源涵养、土壤保持、固碳及生境质量等模块,对祁连山国家公园的生态系统服务进行估算。
(1)水源涵养服务评估模型
InVEST模型中的Water Yield模块是基于Budyko曲线和年平均降水量建立的[22],本文使用该模块计算祁连山国家公园的水源涵养服务,计算公式如下:
Y x = 1 - A E T x P x × P x
式中:Yx为像元x的产水量(m3);AETx为像元x的年实际蒸发量(mm);Px为像元x的年降水量(mm)。
(2)土壤保持服务评估模型
InVEST模型中的SDR模块是基于USLE进行计算的,土壤保持量包含土壤潜在侵蚀量和实际土壤侵蚀量两部分[23],本文使用该模块计算祁连山国家公园的土壤保持服务,计算公式如下:
S E D R E T x = R K L S x - U S L E x
式中:SEDRETx为栅格单元x的土壤保持量(t);RKLSxUSLEx分别表示土壤潜在侵蚀量(t)、实际土壤侵蚀量(t)。具体计算公式如下:
R K L S x = R x × K x × L S x
U S L E x = R x × K x × L S x × C x × P x
式中:Rx为降雨侵蚀力 [MJ·mm/(hm2·h·a)];Kx为土壤可蚀性;LSx为坡长—坡度因子;Cx为植被覆盖因子;Px为管理因子。
(3)碳固存服务评估模型
InVEST模型中的Carbon模块考虑了四个碳库(地上生物量、地下生物量、土壤有机物、枯落物)中的固碳量,是用平均碳密度乘以不同土地利用/土地覆被类型的面积来计算生态系统碳储量[24],本文使用该模块来计算祁连山国家公园的碳固存服务,公式如下:
C = C a b o v e + C b e l o w + C d e a d + C s o i l
式中:C为生态系统总碳储量(t);Cabove为地上部分碳储量(t);Cbelow为地下部分碳储量(t); C d e a d为土壤有机物碳储量(t);Csiol为枯落物碳储量(t)。
(4)生境质量评估模型
生境质量是网格单元中的景观类型、周围网格单元中的景观以及网格单元中的生境对周围景观构成威胁的敏感性函数[25]。InVEST模型中的Habitat Quality模块是结合景观类型信息以及生物多样性威胁来计算的,计算公式如下:
Q x j = H j 1 - D x j 2 D x j 2 + k 2
式中:Qxj为生境质量;Hj为生境适宜性指标; D x j 2为生境胁迫水平的平方;k为半饱和系数。

1.3.3 广义相加模型

广义相加模型(generalized additive model,GAM)是广义线性模型(GLM)的扩展,本质是利用连接函数把加性模型中响应变量的期望与加性部分联系起来[29]。计算公式如下:
g E Y = s 0 + s 1 X 1 + s 2 X 2 + + s P X P = η
式中:E(Y)是Y的期望; s 0是截距; s i ·i=1, 2, …, p)是非参数光滑函数,满足Esi(Xi)=0,光滑函数 s i ·是针对每一个预测变量Xi的单变量函数,可以是光滑样条函数、局部回归光滑函数或核函数等,本文使用的是三次样条函数,它不仅具有较好的整体光滑性,还能很好地适应数据和函数的变化; g ·为连接函数,它是一个单调可微的非线性函数,对于不同分布类型的因变量,连接函数的形式也不同。在R软件中使用“mgcv”来实现。

2 结果分析

2.1 人类活动的时空变化特征

2000—2019年祁连山国家公园HAI呈逐渐下降趋势,HAI年均值在0.5左右,表明2000年以来祁连山国家公园人类活动强度不断减弱,并呈以中强度为主的特征(图2)。其中,中强度、较高强度人类活动区域不断减少,两区域所占比例分别由2000年的43.58%、41.76%减少至2019年的42.17%、41.64%;而较低强度、低强度人类活动区域不断增加,两区域所占比例分别由2000年的11.73%、2.93%增加到2019年的11.82%、4.38%。具体来看,2000—2005年,较高强度人类活动区域呈快速扩张态势,该区域所占比例增加了近30%,即该阶段人类活动强度增加。2005—2010年,较低强度、低强度人类活动区域所占比例增加较多,分别增加了9%、4.17%,表明随着自然保护力度的不断加强,人类活动强度不断减弱。
图2 祁连山国家公园HAI的时空变化

Fig. 2 Spatio-temporal change of HAI in Qilian Mountain National Park

从空间分布来看,2000—2019年祁连山国家公园人类活动整体上呈西高东低的分布格局(图2)。具体来看,较高强度人类活动区域占比较高,主要分布在西部的肃南县以及肃北县、天峻县、祁连县的部分区域,在东部的天祝县、门源县的部分低海拔区域也有分布;其中,2000—2005年增长较快,并在研究区东部的肃北县、肃南县形成大规模的连片分布区。中强度人类活动区域占比均在40%以上,主要分布在西部的肃北县,且分布范围呈不断缩小趋势。较低强度人类活动区域占比逐年增加,主要在东部的山丹县、民乐县、天祝县等的部分地区集聚分布。低强度人类活动区域占比较少,但增加较快,主要沿疏勒河、党河、野马河、大通河等流域呈条带状、团块状分布。
从人类活动类型来看,林地、草地、湿地等面积的增加反映出气候变化背景下人类活动的正面影响,而耕地、水域、农村居民点、其他建设用地、未利用地等面积的增加则反映了人类活动的负面影响。2000—2019年祁连山国家公园人类活动以草地、未利用土地、林地为主,其他类型的人类活动相对较少(表2图3)。草地是最主要的人类活动类型,占比高于40%,但整体呈减少趋势,未利用土地也在减少,而湿地、水域、其他建设用地呈增加态势,表明近20年祁连山国家公园产生正向影响的人类活动占主要。具体来看,2000—2005年,林地、草地、未利用地等人类活动类型之间的转换较多,未利用地转草地、林地的面积最多,分别为6.52×104 m2、9408 m2,多分布在甘肃祁连山国家级自然保护区的天祝县、肃南县以及甘肃盐池湾国家级自然保护区的肃北县等地。2005—2010年,未利用地、耕地转为湿地的面积较多,因而这一阶段内湿地面积明显增加,主要分布在肃南县北部及疏勒河流域等地,但未利用地面积明显减少,主要转换为林地、草地、湿地。2010—2015年,新增草地面积4446 m2,主要来源于水域、湿地、未利用地的转换,多分布在青海祁连山省级自然保护区等地,但产生负面影响的人类活动变化不大。2015—2019年产生负面影响的人类活动大多在减少,其中,未利用地面积持续减少,减少了2280 m2
表2 祁连山国家公园不同人类活动类型的变化

Table 2 Changes of different types of human activities in Qilian Mountain National Park (m2)

人类活动 2000年 2005年 2010年 2015年 2019年 2000—2009年
耕地 35679 36307 36809 36565 36793 0.031
林地 594643 593677 599020 598613 599303 0.008
草地 2116500 2114906 2106091 2110537 2110443 -0.003
水域 4707 4821 5112 5926 5569 0.183
湿地 106526 106617 174182 175055 177364 0.665
农村居民点 1448 1461 1421 1499 1461 0.009
其他建设用地 211 209 192 565 627 1.972
未利用地 2209041 2209574 2145509 2139580 2137298 -0.032
图3 祁连山国家公园人类活动类型的时空变化

Fig. 3 Spatio-temporal change of human activity types in Qilian Mountain National Park

2.2 生态系统服务的时空变化特征

2000—2019年祁连山国家公园水源涵养服务呈先增后减趋势,整体呈西低东高的分布格局,且存在较明显的空间异质性,但部分地区的水源涵养量不稳定,出现了较大面积的显著变化(图4)。2000—2005年水源涵养能力显著提升,单位面积水源涵养量由224.920 mm增加至236.361 mm,增幅为5.09%;高值区显著扩张并在中、东部形成较大规模的连片分布区,将青海祁连山省级自然保护区、甘肃马蹄寺省级森林国家公园等重要的自然保护地联通起来。2005—2010年,单位面积水源涵养量略有下降,降幅为1.24%;高值区在祁连县、天峻县、德令哈市、肃北县等地趋于收缩,主要是由于草地面积的减少所致,减少面积近1×104 m2。2010—2015年,水源涵养能力剧减,单位面积水源涵养量由233.423 mm减少至217.684 mm,降幅高达6.74%;高值区明显减少,仅在东部的门源县呈零星分布,而低值区趋于扩张,主要分布在肃北县等地。2015—2020年,水源涵养能力仍在下降,降幅为3.82%,低值区仍趋于扩张,且在西部、中部形成了大规模的连片分布区;高值区也趋于扩张,主要集中在东部的甘肃天祝三峡国家森林公园等自然保护地周边,该区有较大规模的草地和林地分布区。
图4 祁连山国家公园水源涵养服务的时空变化

Fig. 4 Spatio-temporal change of water conservation services in Qilian Mountain National Park

2000—2019年间,祁连山国家公园土壤保持服务的变化相对较小,整体呈波动上升趋势(图5)。年平均土壤保持量在130×107 t左右,单位面积土壤保持量由2000年的39.243 t波动增加至2019年的40.276 t,但在2015年下降至最低值38.971 t,这可能与该时段的植被覆盖度相对较少有关。从空间分布来看,2000—2019年祁连山国家公园的土壤保持能力自西向东逐渐增强,且高值区、低值区的空间分布相对稳定,少见大面积的显著变化;高值区主要分布在甘肃祁连山国家级自然保护区、甘肃天祝三峡国家森林公园、甘肃马蹄寺省级森林公园、甘肃冰沟河省级森林公园等自然保护地,低值区主要分布在西部的疏勒河流域等地。
图5 祁连山国家公园土壤保持服务的时空变化

Fig. 5 Spatio-temporal change of soil conservation services in Qilian Mountain National Park

2000—2019年间,祁连山国家公园碳固存服务呈逐年增加趋势,且各个研究时段内的变化相对较小(图6)。年平均碳固存总量467×106 t,单位面积碳固存量由2000年的22.467 t增加至2019年的24.377 t,增幅为8.5%,说明当地的植被退化区域在减少,植被覆盖度逐渐增加,因而固碳能力有所提升。2000—2019年祁连山国家公园的碳固存能力也呈自西向东逐渐增强,且碳固存变化结果的空间分布相对较稳定,高值区和低值区占比均在30%以上。其中,高值区主要分布在祁连山国家公园中部及西部海拔相对较低的一些区域,低值区主要分布在祁连山国家公园西部及中部的部分高海拔地区。
图6 祁连山国家公园碳固存服务的时空变化

Fig. 6 Spatio-temporal change of carbon sequestration service in Qilian Mountain National Park

2000—2019年间,祁连山国家公园生境质量呈缓慢增加趋势,但其变化相对较小,呈现出较稳定的“西低东高”分布格局(图7)。2019年祁连山国家公园的生境质量指数为0.650,与2000年的0.586相比,提高了0.064,表明随着生态环境保护措施的加强,祁连山国家公园的生境质量在改善。其中,2005—2010年祁连山国家公园的生境质量指数由0.596提高至0.637,提升幅度相对最高,即这一阶段内生境质量提升明显,在疏勒河、党河及大通河等流域生境质量由低值区提升至中值区,在青海祁连黑河源国家湿地公园的生境质量低值区也趋于缩小。
图7 祁连山国家公园生境质量的时空变化

Fig. 7 Spatio-temporal change of habitat quality services in Qilian Mountain National Park

2.3 人类活动对生态系统服务的影响

生态系统服务的分布受人类活动和自然因素的共同驱动。本文将人类活动强度指数作为解释变量,水源涵养量、土壤保持量、碳固存量、生境质量作为响应变量,运用GAM模型探究祁连山国家公园人类活动对关键生态系统服务的影响。结果表明,模型拟合效果较好,R2达到了87.70%,说明该模型能够解释响应变量87.70%的变化,且人类活动对每个响应变量变化的显著影响均在p<0.01的水平上,表明人类活动在统计学上是每个响应变量变化的单独解释变量。其中,人类活动对生境质量、土壤保持、碳固存的解释力较高,偏差解释量在55.52%~62.70%之间,但是人类活动对水源涵养的解释力较低,不足20%(表3)。
表3 GAM模型假设检验结果

Table 3 Hypothesis testing results of GAM model

响应变量 自由度 偏差解释量/%
2000年 2005年 2010年 2015年 2019年 2000年 2005年 2010年 2015年 2019年
水源涵养 7.561 7.780 8.179 7.930 8.210 16.02 13.37 12.26 12.94 10.30
土壤保持 8.195 8.471 8.232 7.912 8.531 55.52 57.31 58.70 58.93 60.91
碳固存 7.956 8.241 8.470 8.809 8.990 53.30 54.41 55.73 56.50 55.64
生境质量 8.921 9.046 9.123 9.174 9.177 57.17 58.32 59.04 59.56 62.70
研究发现,人类活动确实会影响生态系统服务的提供,但其与各响应变量之间存在复杂的非线性关系(图8)。2000—2019年,随着人类活动强度的不断减弱,祁连山国家公园的生境质量、土壤保持、碳固存服务呈增加趋势,仅水源涵养服务呈下降趋势。
图8 人类活动对关键生态系统服务的影响

Fig. 8 Impacts of human activity on key ecosystem services

2000—2019年人类活动强度指数在0~0.6之间的区域是人类活动强度的主要变化区域。特别是当人类活动强度指数在0~0.1之间的区域时,人类活动与水源涵养服务呈显著负相关。人类活动强度指数在0.8左右的区域时,人类活动与土壤保持服务呈正相关。但就生境质量和碳固存服务而言,不论人类活动强度指数如何变化,人类活动与这两种类型的生态系统服务之间始终呈显著负相关关系。
总的来看,人类活动强度指数在0.4~0.6之间的区域增加较快,这也导致某些生态系统服务类型发生了较大变化。其中,水源涵养服务在人类活动强度指数0.4~0.8之间的区域呈大幅下降趋势,而在人类活动强度指数0~0.4的范围内变化相对较小。此外,当人类活动达到一定强度后,随着人类活动强度的下降,土壤保持服务呈急剧下降趋势。

3 结论与讨论

3.1 结论

祁连山国家公园是黄河流域的重要水源产流地、甘肃河西走廊的“生命线”,也是西北地区乃至全国最为重要的生态安全屏障之一,社会经济的不断发展使人类活动对生态系统服务的影响越来越显著。本文评估了2000—2019年祁连山国家公园的人类活动强度,并运用InVEST模型分析了关键生态系统服务的变化,最后利用广义相加模型探究了人类活动对生态系统服务的影响。得出以下结论:
(1)2000—2019年祁连山国家公园的人类活动强度不断减弱,并呈以中等强度为主的特征,空间分布特征总体上呈西高东低的态势。
(2)近20年祁连山国家公园土壤保持、碳固存、生境质量均呈增加趋势,大致呈西低东高的分布格局,但水源涵养量呈先增后减趋势,并存在较明显的空间异质性,部分地区的水源涵养量不稳定,在研究期间出现了较大面积的显著变化。
(3)祁连山国家公园人类活动与碳固存、生境质量存在显著的负相关关系,与土壤保持存在相对较弱的负相关关系,而与水源涵养存在复杂的非线性关系,研究表明人类活动强度的增加会直接影响当地生态系统服务的提供。
根据以上研究结果,建议从国家公园人地关系交互的视角充分考虑人类活动对生态系统服务的综合影响及其差异,并在国家公园的生态规划和管理中要充分考虑人类活动的不同方式与强度,针对不同管控分区实施更具针对性的保护措施。如,在核心保护区,实行最严格的管控,采取诸如生态移民等方式逐渐降低人类活动强度,保护好当地的自然生态系统;而在国家公园与区域外的缓冲地带,即一般控制区可以开展自然体验、环境教育等“全民共享”活动。同时,应鼓励原住民参与到国家公园的保护与管理中来,保障社区成为国家公园建设的直接受益者,从而将大量的社区人类活动转化为对国家公园保护和管理有利的力量。

3.2 讨论

本文发现,人类活动可以是积极的,也可以是消极的。具体来看,快速城市化、人口增长以及农业生产等人类活动会对自然环境产生极大的负面影响,使生态系统的结构、功能受损,进而影响到生态系统服务,如直接减少了水源涵养、土壤保持、碳固存、生境质量等重要生态系统服务的可持续供给[38]。人类活动造成的土地沙漠化、草地退化、湿地萎缩等负面影响是造成生态系统服务供给减少的主要原因,Dwiyahreni等[15]在印度尼西亚国家公园的研究中也有类似发现。积极的人类活动对生态环境保护和恢复有正向促进作用。研究发现,2000—2019年祁连山国家公园人类活动强度呈不断下降趋势,这与当地实施的生态保护政策有关[33]。中国实施的天然林资源保护、退耕(牧)还林(草)、水土保持工程以及自然保护区建设等生态保护工程,促进了森林资源增长、草地生态功能恢复以及荒漠化、沙化、石漠化面积持续减少,使中国生态环境质量改善、生态系统服务功能提升[30]
本文中,碳固存、生境质量与人类活动呈负相关关系,且生境质量与人类活动的相关性高于碳固存,表明人类活动对生境质量的影响更大。这主要是由于祁连山国家公园保护与发展的矛盾比较突出,在超载放牧、过度开发和保护手段滞后等多种因素的共同作用下,地表发生了巨大的变化,土地荒漠化、盐碱化、沙化加剧,致使当地脆弱的生态系统濒临崩溃,生境质量逐渐下降[35]。已有研究也发现人类活动较强,碳储量较低[39]。土壤保持服务与人类活动呈负相关关系,但相关性较弱。水土流失是祁连山国家公园面临的主要生态环境问题之一,水土流失主要集中在西部的山区,但这些地区海拔高、人类活动相对较弱,使土壤保持能力相对增强。此外,2017年“祁连山系列环境污染案”过后,实施的水土保持工程是祁连山生态环境保护与综合治理的七大工程之一,对土壤保持能力的提升发挥了一定作用[33]
水源涵养服务相对更复杂,呈先增后减趋势,这可能是由不合理的人类活动引起的,如过度放牧导致的草地退化、种植农作物需水量大、农村居民点修建、基础设施建设等,导致蒸散和降水下渗减少,进而影响产水量。现有研究表明,影响水源涵养服务的因素较多,如降水量、土壤深度、海拔等[34,35],人类活动对水源涵养服务的影响远低于其他因素。水源涵养是祁连山国家公园最重要的生态系统服务之一,对整个西北地区乃至全国发挥着重要的生态屏障作用。因此,后续研究应进一步探明水源涵养与人类活动之间的相互作用机制。
人类活动是以自然环境为背景展开的,因此也有必要分析自然因素对生态系统服务的影响,如海拔、坡度、降水量、温度、相对湿度、日照时数等。如果忽视这些自然因素,特别是气候变化的影响,将会导致对生态系统服务的错误评估[40]。然而,气候变化对生态系统服务的影响相对较难评估,因为气候变化的影响往往是在较长时间尺度上发生变化[41],且祁连山国家公园属于中国国家公园的第一批试点区,区内分布有多个国家级、省级自然保护地,其保护目标、管理原则等等本身各有不同,对不同的气候要素的响应也有差别,具有高度的不确定性。因此,进一步的研究中需综合考虑不同要素,以提高评估的准确性。人类活动强度涉及自然条件、人文环境以及生产、生活等多重因素,后续研究中要考虑选择更具体的指标,以便更直观地表征人类活动,对于重点生态功能区等特定的区域,科学合理地界定人类活动强度也是需要进一步研究的问题。此外,由于研究区独特的地理位置和气候条件,导致数据获取的成本高、难度大,对遥感影像的解译精度也有一定影响,后续研究中应采用更系统规范的方法评定遥感分类结果的精度。
[1]
FINLAYSON C M, D'CRUZ R, DAVIDSON N, et al. Ecosystems and Human Well-being. Island Press: Washington, DC, USA, 2005: 60-69.

[2]
陈妍, 侯鹏, 王媛, 等. 生态保护地协同管控成效评估. 自然资源学报, 2020, 35(4): 779-787.

DOI

[ CHEN Y, HOU P, WANG Y, et al. Evaluation of protection effect of eoordinated management of different kinds of nature reserves. Journal of Natural Resources, 2020, 35(4): 779-787.]

DOI

[3]
WATSON J E M, DUDLEY N, SEGAN D B, et al. The performance and potential of protected areas. Nature, 2014, 515: 67-73.

DOI

[4]
VENTER O, SANDERSON E W, MAGRACH A, et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 2016, 7: 12558, Doi: 10.1038/ncomms12558.

DOI PMID

[5]
JONES K R, VENTER O, FULLER R A, et al. One-third of global protected land is under intense human pressure. Science, 2018, 360(6390): 788-791.

DOI PMID

[6]
SALVIA A L, FILHO W L, BRANDLI L L, et al. Assessing research trends related to Sustainable Development Goals: Local and global issues. Journal of Cleaner Production, 2019, 208: 841-849.

DOI

[7]
MASTRÁNGELO M E, PÉREZ-HARGUINDEGUY N, ENRICO L, et al. Key knowledge gaps to achieve global sustainability goals. Nature Sustainability, 2019, 2: 1115-1121.

DOI

[8]
王博宇, 闫慧敏, 胡云锋, 等. "半个地球"愿景下的保护地识别: 基于全球主要优先保护模块. 自然资源学报, 2021, 36(5):1102-1115.

DOI

[ WANG B Y, YAN H M, HU Y F, et al. Identification of protected areas under the "Half Earth" target: Based on main global conservation priorities. Journal of Natural Resources, 2021, 36(5): 1102-1115.]

DOI

[9]
祝萍, 黄麟, 肖桐, 等. 中国典型自然保护区生境状况时空变化特征. 地理学报, 2018, 73(1): 92-103.

DOI

[ ZHU P, HUANG L, XIAO T, et al. Dynamic changes of habitats in China's typical nature reserves on spatial and temporal scales. Acta Geographica Sinica, 2018, 73(1): 92-103.]

DOI

[10]
王志杰, 苏嫄. 南水北调中线汉中市水源地生态脆弱性评价与特征分析. 生态学报, 2018, 38(2): 432-442.

[ WANG Z J, SU Y. Analysis of Eco-environmental vulnerability characteristics of Hanzhong city, near the water source midway along the route of the south-to-north water transfer project, China. Acta Ecologica Sinica, 2018, 38(2): 432-442.]

[11]
ZHOU K, WU J Y, LIU H C. Spatio-temporal estimation of the anthropogenic environmental stress intensity in the Three-River-Source National Park Region, China. Journal of Cleaner Production, 2021, 318: 128476, Doi: 10.1016/j.jclepro.2021.128476.

DOI

[12]
徐小任, 徐勇. 黄土高原地区人类活动强度时空变化分析. 地理研究, 2017, 36(4): 661-672.

DOI

[ XU X R, XU Y. Analysis of spatial-temporal variation of human activity intensity in Loess Plateau Region. Geographical Research, 2017, 36(4): 661-672.]

[13]
刘晓曼, 付卓, 闻瑞红, 等. 中国国家级自然保护区人类活动及变化特征. 地理研究, 2020, 39(10): 2391-2402.

DOI

[ LIU X M, FU Z, WEN R H, et al. Characteristics of human activities and the spatio-temporal changes of national nature reserves in China. Geographical Research, 2020, 39(10): 2391-2402.]

DOI

[14]
SANDERSON E W, JAITEH M, LEVY M A, et al. The human footprint and the last of the wild: The human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience, 2002, 52(10): 891-904.

DOI

[15]
DWIYAHRENI A A, FUAD H A H, MUHTAR S, et al. Changes in the human footprint in and around Indonesia's terrestrial national parks between 2012 and 2017. Scientific Reports, 2021, 11: 4510, Doi: 10.1038/s41598-021-83586-2.

DOI PMID

[16]
彭建, 王仰麟, 吴健生. 净初级生产力的人类占用: 一种衡量区域可持续发展的新方法. 自然资源学报, 2007, 22(1): 153-158.

[ PENG J, WANG Y L, WU J S. Human appropriation of net primary production: An approach for ecological assessment of regional sustainable development. Journal of Natural Resources, 2007, 22(1): 153-158.]

DOI

[17]
冯志贤, 张继贤, 侯伟, 等. 基于地表覆盖分类的生态环境人为干扰度分析: 以北京市为例. 生态学杂志, 2017, 36(2): 508-516.

[ FENG Z X, ZHANG J X, HOU W, et al. Dynamic changes of hemeroby degree based on the land cover classification: A case study in Beijing. Chinese Journal of Ecology, 2017, 36(2): 508-516.]

[18]
BROWN M T, VIVAS M B. Landscape development intensity index. Environmental Monitoring and Assessment, 2005, 101: 289-309.

PMID

[19]
COSTANZA R, DARGE R, DE GROOT R, et al. The value of the world's ecosystem services and natural capital. Nature, 1997, 387: 253-260.

DOI

[20]
DAILY G C. Nature′s Services:Societal Dependence on Natural Ecosystems. Washington DC: Island Press, 1997: 71-92.

[21]
申嘉澍, 李双成, 梁泽, 等. 生态系统服务供需关系研究进展与趋势展望. 自然资源学报, 2021, 36(8): 1909-1922.

DOI

[ SHEN J S, LI S C, LIANG Z, et al. Research progress and prospect for the relationships between ecosystem services supplies and demands. Journal of Natural Resources, 2021, 36(8): 1909-1922.]

DOI

[22]
CAO W, WU D, HUANG L, et al. Spatial and temporal variations and significance identification of ecosystem services in the Sanjiangyuan National Park, China. Scientific Reports, 2020, 10: 6151, Doi: 10.1038/s41598-020-63137-x.

DOI PMID

[23]
赵雪雁, 马平易, 李文青, 等. 黄土高原生态系统服务供需关系的时空变化. 地理学报, 2021, 76(11): 2780-2796.

DOI

[ ZHAO X Y, MA P Y, LI W Q, et al. Spatiotemporal changes of supply and demand relationships of ecosystem services in the Loess Plateau. Acta Geographica Sinica, 2021, 76(11): 2780-2796.]

DOI

[24]
XU Z, PENG J, DONG J, et al. Spatial correlation between the changes of ecosystem service supply and demand: An ecological zoning approach. Landscape and Urban Planning, 2022, 217: 104258, Doi: 10.1016/j.landurbplan.2021.104258.

DOI

[25]
ROCES-DÍAZ J V, VAYREDA J, BANQUÉ-CASANOVAS M, et al. Assessing the distribution of forest ecosystem services in a highly populated Mediterranean region. Ecological Indicators, 2018, 93: 986-997.

DOI

[26]
杨薇, 靳宇弯, 孙立鑫, 等. 基于生产可能性边界的黄河三角洲湿地生态系统服务权衡强度. 自然资源学报, 2019, 34(12): 2516-2528.

DOI

[ YANG W, JIN Y W, SUN L X, et al. Determining the intensity of the trade-offs among ecosystem services based on production-possibility frontiers: Model development and a case study. Journal of Natural Resources, 2019, 34(12): 2516-2528.]

DOI

[27]
郑华, 欧阳志云, 赵同谦, 等. 人类活动对生态系统服务功能的影响. 自然资源学报, 2003, 18(1): 118-126.

[ ZHENG H, OUYANG Z Y, ZHAO T Q, et al. The impact of human activities on ecosystem services. Journal of Natural Resources, 2003, 18(1): 118-126.]

DOI

[28]
连喜红, 祁元, 王宏伟, 等. 人类活动影响下的青海湖流域生态系统服务空间格局. 冰川冻土, 2019, 41(5): 1254-1263.

DOI

[ LIAN X H, QI Y, WANG H W, et al. Spatial pattern of ecosystem services under the influence of human activities in Qinghai Lake watershed. Journal of Glaciology and Geocryology, 2019, 41(5): 1254-1263.]

DOI

[29]
QI Y, LIAN X, WANG H, et al. Dynamic mechanism between human activities and ecosystem services: A case study of Qinghai Lake Watershed, China. Ecological Indicators, 2020, 117: 106528, Doi: 10.1016/j.ecolind.2020.106528.

DOI

[30]
曹巍, 黄麟, 肖桐, 等. 人类活动对中国国家级自然保护区生态系统的影响. 生态学报, 2019, 39(4): 1338-1350.

[ CAO W, HUANG L, XIAO T, et al. Effects of human activities on the ecosystems of China's National Nature Reserves. Acta Ecologica Sinica, 2019, 39(4): 1338-1350.]

[31]
柳冬青, 曹二佳, 张金茜, 等. 甘肃白龙江流域水源涵养服务时空格局及其影响因素. 自然资源学报, 2020, 35(7): 1728-1743.

DOI

[ LIU D Q, CAO E J, ZHANG J X, et al. Spatio-temporal pattern of water conservation and its influencing factors in Bailongjiang Watershed of Gansu. Journal of Natural Resources, 2020, 35(7): 1728-1743.]

DOI

[32]
DARVILL R, LINDO Z. The inclusion of stakeholders and cultural ecosystem services in land management trade-off decisions using an ecosystem services approach. Landscape Ecology, 2016, 31: 533-545.

DOI

[33]
杨全生, 刘建泉, 汪有奎, 等. 甘肃祁连山国家级自然保护区综合科学考察报告. 兰州: 甘肃省科学技术出版社, 2008: 22-23.

[ YANG Q S, LIU J Q, WANG Y K, et al. Comprehensive Scientific Investigation Report of Qilian Mountain National Nature Reserve in Gansu. Lanzhou: Gansu Science and Technology Press, 2008: 22-23.]

[34]
付建新, 曹广超, 郭文炯. 祁连山国家公园青海片区山水林田湖草的时空分异. 应用生态学报, 2021, 32(8): 2866-2874.

DOI

[ FU J X, CAO G C, GUO W J. Spatial-temporal differentiation of mountain-water-forest-farmland-lake-grass system in Qinghai area of the Qilian Mountain National Park, China. Chinese Journal of Applied Ecology, 2021, 32(8): 2866-2874.]

[35]
张华, 韩武宏, 宋金岳, 等. 祁连山国家公园生境质量时空演变. 生态学杂志, 2021, 40(5): 1419-1430.

[ ZHANG H, HAN W H, SONG J Y, et al. Spatial-temporal variations of habitat quality in Qilian Mountain National Park. Chinese Journal of Ecology, 2021, 40(5): 1419-1430.]

[36]
徐勇, 孙晓一, 汤青. 陆地表层人类活动强度: 概念、方法及应用. 地理学报, 2015, 70(7):1068-1079.

DOI

[ XU Y, SUN X Y, TANG Q. Human activity intensity of land surface: Concept, method and application in China. Acta Geographica Sinica, 2015, 70(7): 1068-1079.]

DOI

[37]
马国霞, 於方, 王金南, 等. 中国2015年陆地生态系统生产总值核算研究. 中国环境科学, 2017, 37(4): 1474-1482.

[ MA G X, YU F, WANG J N, et al. Measuring gross ecosystem product (GEP) of 2015 for terrestrial ecosystems in China. China Environmental Science, 2017, 37(4): 1474-1482.]

[38]
FANG J H, SONG H L, ZHANG Y R, et al. Climate-dependence of ecosystem services in a nature reserve in Northern China. PLoS One, 2018, 13: e0192727, Doi: 10.1371/journal.pone.0192727.

DOI

[39]
李永格, 李宗省, 冯起, 等. 基于生态红线划定的祁连山生态保护性开发研究. 生态学报, 2019, 39(7): 2343-2352.

[ LI Y G, LI Z X, FENG Q, et al. Research on the development of the ecological protection of the Qilian Mountains based on ecological redline. Acta Ecologica Sinica, 2019, 39(7): 2343-2352.]

[40]
RUNTING R K, BRYAN B A, DEE L E, et al. Incorporating climate change into ecosystem service assessments and decisions: A review. Global Change Biology, 2016, 23: 28-41.

DOI

[41]
LI J, ZHOU Z X. Natural and human impacts on ecosystem services in Guanzhong-Tianshui Economic Region of China. Environmental Science and Pollution Research, 2016, 23: 6083-6815.

文章导航

/