长江三角洲创新发展空间溢出效应的测度与分解
闫东升(1990- ),男,河南项城人,博士,讲师,主要从事城市发展与区域规划研究。E-mail: yds1223@163.com |
收稿日期: 2021-01-11
修回日期: 2021-06-06
网络出版日期: 2022-08-28
基金资助
国家自然科学基金项目(42101183)
国家自然科学基金项目(41871119)
国家自然科学基金项目(41871209)
美丽中国生态文明建设科技工程专项(XDA23020102)
Measurement and decomposition of the spatial spillover effect of innovation development in the Yangtze River Delta
Received date: 2021-01-11
Revised date: 2021-06-06
Online published: 2022-08-28
一体化深化背景下,准确把握城市群创新互动关系,对于推动高质量发展具有重要现实意义。空间溢出是创新发展互动关系重要体现之一,基于城市尺度数据、空间计量方法,对长江三角洲创新发展空间溢出效应进行多角度研究。主要结论如下:(1)城市创新发展存在显著为正的空间溢出效应,创新人才、资金投入、经济发展、交通设施和对外开放等都是创新发展重要驱动因素,但不同因素空间溢出效应存在差异。(2)不同区域、不同时期对比发现,创新发展空间溢出效应存在显著差异,如区域对比核心区时间演变明显增强等。(3)空间溢出效应随距离增加呈现“倒U型”演变趋势,且这一效应在325 km处最大,而后空间溢出效应的缓慢波动下降与中心城市相对均衡分布有关。本文为识别城市创新发展互动关系提供了新视角,对推动城市群创新发展、一体化深化等具有现实指导意义。
闫东升 , 韩孟孟 , 孙伟 . 长江三角洲创新发展空间溢出效应的测度与分解[J]. 自然资源学报, 2022 , 37(6) : 1455 -1466 . DOI: 10.31497/zrzyxb.20220606
From a long-term perspective, innovation is the key driving force for economic growth. Under the background of China's economic transition from high-speed growth to high-quality development, the promotion of the innovation level is one of the important measures to achieve higher-quality economic development. A large number of studies conducted in-depth discussions on the spatio-temporal evolution and driving factors of the innovation development, and found that the inefficient allocation of innovation resources and the imbalance co-opetition relationship had become important factors restricting China's innovation development. Under the background of deepening integration, accurately grasping the innovative interactive relationship of urban agglomerations has important practical significance for promoting high-quality development. The spatial spillover effect is an important manifestation of the interactive relationship among regional innovation development. Based on the prefecture level data from 2000 to 2017 and spatial measurement methods, this paper conducts a multi-angle study on the spatial spillover effects of innovation development in the Yangtze River Delta. The results show that: (1) The innovative development had a significant positive spatial spillover effect of the Yangtze River Delta Urban Agglomeration. Overall, innovative talents, capital investment, economic development, transportation facilities, and opening-up were all important driving factors for innovation development, but different factors show differences in spatial spillover effect. (2) Comparing different regions and different periods, we found that there were significant differences in the spatial spillover effects of innovation development, such as stronger core regions and significantly enhanced temporal evolution. (3) Many studies had shown that the spatial spillover effect of innovation development was significantly affected by distance. This article found that the spillover effect exhibited an "inverted U" evolution characteristic with the increase of distance in the Yangtze River Delta, and the strongest spillover effect was found at a distance of 325 km, which showed that there was an optimal spatial boundary for urban agglomerations from the perspective of innovation. However, the spatial spillover effect fluctuated slowly when the distance exceeded 325 km, which was affected by the relatively balanced distribution of central cities. The research provides a new perspective for identifying the co-opetition relationship of innovation development about urban agglomerations, and has practical guiding significance for promoting the innovation development and deepening integration of urban agglomerations.
表1 OLS回归残差的空间相关性结果Table 1 Spatial correlation results of residuals about OLS regression |
年份 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
---|---|---|---|---|---|---|---|---|---|
Moran's I | 0.122 | 0.137 | 0.137 | 0.114 | 0.119 | 0.118 | 0.180 | 0.188 | 0.155 |
Z(I) | 1.990 | 2.294 | 2.233 | 2.067 | 1.909 | 2.660 | 4.698 | 3.936 | 4.099 |
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
Moran's I | 0.148 | 0.157 | 0.120 | 0.093 | 0.111 | 0.166 | 0.174 | 0.203 | 0.182 |
Z(I) | 3.590 | 4.477 | 2.897 | 2.064 | 2.631 | 3.673 | 3.625 | 4.110 | 4.115 |
表2 空间面板模型的检验结果Table 2 The test results of spatial panel model |
检验方法 | 统计值 | p值 |
---|---|---|
Wald-spatial lag | 15.35 | 0.004 |
LR-spatial lag | 29.68 | 0.000 |
Wald-spatial error | 39.54 | 0.000 |
LR-spatial error | 54.12 | 0.000 |
Hausman | 61.43 | 0.000 |
表3 城市群创新发展的空间杜宾模型估计结果Table 3 SDM estimation results of the innovative development |
变量 | 估计结果 | 变量 | 估计结果 |
---|---|---|---|
Tal | 0.437***(5.70) | W×Tal | 0.899***(3.96) |
Fund | 0.663***(5.86) | W×Fund | -0.152(-0.41) |
PGDP | 0.138***(6.19) | W×PGDP | -0.164***(-3.15) |
Tra | 0.335***(3.83) | W×Tra | -0.554**(-2.34) |
Ope | 1.005***(12.80) | W×Ope | 2.160***(9.22) |
Adj.R2 | 0.869 | ρ | 0.756***(17.68) |
注:**、***分别表示5%、1%显著性水平,括号内为t值,下同。 |
表4 空间杜宾模型的效应分解Table 4 SDM effects decomposition results of the innovative development |
变量 | 总效应 | 直接效应 | 间接效应 |
---|---|---|---|
Tal | 0.731*** (3.30) | 0.320*** (5.34) | 0.421*** (3.15) |
Fund | 0.614*** (5.80) | 0.655*** (7.60) | -0.0407 (-0.23) |
PGDP | 0.0714** (2.33) | 0.163*** (7.13) | -0.0916*** (-2.83) |
Tra | 0.115* (1.98) | 0.412*** (4.37) | -0.297** (-2.28) |
Ope | 1.748*** (5.47) | 0.726*** (8.88) | 1.022*** (5.21) |
注:*表示10%显著性水平,下同。 |
表5 不同时期空间杜宾模型的效应分解Table 5 SDM effects decomposition results in different periods |
时段/年 | Tal | Fund | PGDP | Tra | Ope | |
---|---|---|---|---|---|---|
总效应 | 2000—2008 | 0.101*(1.80) | 0.523**(2.56) | 0.903**(2.29) | 0.319***(3.26) | -0.113(-0.04) |
2009—2017 | 1.276***(3.70) | 0.816***(3.41) | 0.516***(3.45) | 0.587***(2.61) | 0.979***(3.94) | |
直接效应 | 2000—2008 | 0.257***(3.64) | 0.656**(2.45) | 0.663***(8.37) | 0.669***(4.11) | 0.0966(0.66) |
2009—2017 | 0.488***(2.78) | 0.372**(2.01) | 0.239***(11.19) | 0.157**(2.14) | 0.362**(2.55) | |
间接效应 | 2000—2008 | -0.156(-1.58) | -0.133(-0.47) | 0.240*(1.83) | -0.351(-0.28) | -0.209(-0.07) |
2009—2017 | 0.788***(2.58) | 0.444***(3.36) | 0.277(1.18) | 0.430*(1.69) | 0.617***(3.74) |
表6 不同区域空间杜宾模型的效应分解Table 6 SDM effects decomposition results in different regions |
Tal | Fund | PGDP | Tra | Ope | ||
---|---|---|---|---|---|---|
总效应 | 核心区 | 1.808***(3.12) | 1.048***(2.81) | 0.381**(2.44) | 0.527***(4.53) | 0.487***(4.26) |
边缘区 | 0.481**(2.13) | 1.338**(2.52) | 0.181***(3.70) | 0.296**(2.18) | 1.952*(1.85) | |
直接效应 | 核心区 | 0.380***(3.12) | 0.317*(1.77) | 0.235***(7.57) | 0.305***(3.03) | 0.269***(3.24) |
边缘区 | 0.281***(3.63) | 0.385***(2.74) | 0.388***(9.32) | 0.933***(6.29) | 2.582***(7.28) | |
间接效应 | 核心区 | 1.428*(1.63) | 0.731**(2.50) | 0.145(0.97) | 0.222***(5.31) | 0.218***(5.21) |
边缘区 | 0.200**(1.96) | 0.953(1.51) | -0.207***(-3.23) | -0.637(-0.41) | -0.630(-1.39) |
表7 随地理距离变动的创新空间溢出效应Table 7 Innovation development spatial spillover effects changing with distance |
距离/km | 空间溢出效应 | 距离/km | 空间溢出效应 |
---|---|---|---|
50 | 0.236***(3.97) | 450 | 0.776***(20.29) |
75 | 0.422***(10.99) | 475 | 0.775***(20.00) |
100 | 0.542***(19.61) | 500 | 0.779***(20.05) |
125 | 0.678***(28.06) | 525 | 0.779***(19.91) |
150 | 0.733***(28.84) | 550 | 0.778***(19.77) |
175 | 0.757***(28.68) | 575 | 0.779***(19.65) |
200 | 0.760***(27.24) | 600 | 0.774***(19.18) |
225 | 0.770***(26.44) | 625 | 0.770***(18.91) |
250 | 0.777***(25.75) | 650 | 0.770***(18.80) |
275 | 0.788***(25.45) | 675 | 0.762***(18.24) |
300 | 0.791***(24.91) | 700 | 0.758***(17.93) |
325 | 0.798***(24.28) | 725 | 0.756***(17.76) |
350 | 0.780***(22.15) | 750 | 0.756***(17.75) |
375 | 0.786***(22.20) | 775 | 0.755***(17.66) |
400 | 0.778***(21.04) | 800 | 0.755***(17.61) |
425 | 0.783***(21.11) | / | / |
[1] |
孙瑜康, 孙铁山, 席强敏. 北京市创新集聚的影响因素及其空间溢出效应. 地理研究, 2017, 36(12): 2419-2431.
[
|
[2] |
段德忠, 杜德斌, 谌颖, 等. 中国城市创新技术转移格局与影响因素. 地理学报, 2018, 73(4): 738-754.
[
|
[3] |
苏屹, 林周周. 区域创新活动的空间效应及影响因素研究. 数量经济技术经济研究, 2017, (11): 63-80.
[
|
[4] |
周灿, 曾刚, 宓泽锋, 等. 区域创新网络模式研究: 以长三角城市群为例. 地理科学进展, 2017, 36(7): 795-805.
[
|
[5] |
殷德生, 吴虹仪, 金桩. 创新网络、知识溢出与高质量一体化发展: 来自长江三角洲城市群的证据. 上海经济研究, 2019, (11): 30-45.
[
|
[6] |
王纪武, 孙滢, 林倪冰. 城市创新活动分布格局的时空演化特征及对策: 以杭州市为例. 城市发展研究, 2020, 27(1): 9-15.
[
|
[7] |
|
[8] |
|
[9] |
姜海宁, 张文忠, 余建辉, 等. 山西资源型城市创新环境与产业结构转型空间耦合. 自然资源学报, 2020, 35(2): 269-283.
[
|
[10] |
蒋天颖. 浙江省区域创新产出空间分异特征及成因. 地理研究, 2014, 33(10): 1825-1836.
[
|
[11] |
周锐波, 刘叶子, 杨卓文. 中国城市创新能力的时空演化及溢出效应. 经济地理, 2019, 39(4): 85-95.
[
|
[12] |
何舜辉, 杜德斌, 焦美琪, 等. 中国地级以上城市创新能力的时空格局演变及影响因素分析. 地理科学, 2017, 37(7): 1014-1022.
[
|
[13] |
|
[14] |
|
[15] |
刘鉴, 杨青山, 江孝君, 等. 长三角城市群城市创新产出的空间集聚及其溢出效应. 长江流域资源与环境, 2018, 27(2): 225-234.
[
|
[16] |
程开明, 章雅婷. 中国城市创新空间溢出效应测度及分解. 科研管理, 2018, 39(12): 86-94.
[
|
[17] |
肖泽磊, 朱威鹏, 范斐, 等. 城市群创新投入的空间格局与创新绩效研究: 以长江经济带所辖城市群为例. 人文地理, 2017, 32(3): 61-67.
[
|
[18] |
|
[19] |
白俊红, 王钺, 蒋伏心, 等. 研发要素流动、空间知识溢出与经济增长. 经济研究, 2017, 52(7): 109-123.
[
|
[20] |
湛东升, 吴倩倩, 余建辉, 等. 中国资源型城市房价时空变化与影响因素分析. 自然资源学报, 2020, 35(12): 2888-2900.
[
|
[21] |
|
[22] |
王承云, 孙飞翔. 长三角城市创新空间的集聚与溢出效应. 地理研究, 2017, 36(6): 1042-1052.
[
|
[23] |
李在军, 胡美娟, 张爱平, 等. 工业生态效率对PM2.5污染的影响及溢出效应. 自然资源学报, 2021, 36(3): 737-751.
[
|
[24] |
徐宜青, 曾刚, 王秋玉. 长三角城市群协同创新网络格局发展演变及优化策略. 经济地理, 2018, 38(11): 133-140.
[
|
[25] |
|
[26] |
|
/
〈 |
|
〉 |