植被恢复背景下黄河中游及6个典型流域蒸散发及其组分变化格局
杨泽龙(2000- ),男,河北沧州人,硕士,主要从事水文气象研究。E-mail: zelong_Yang@outlook.com |
收稿日期: 2021-02-18
修回日期: 2021-04-29
网络出版日期: 2022-05-28
基金资助
国家自然科学基金项目(41971035)
国家自然科学基金项目(41877158)
国家自然科学基金项目(41701019)
2021年江苏省高等学校大学生创新创业训练计划项目(202110300100Y)
版权
Variation patterns of evapotranspiration and its components in the Middle Yellow River and six typical basins under the background of vegetation restoration
Received date: 2021-02-18
Revised date: 2021-04-29
Online published: 2022-05-28
Copyright
植被变化可通过改变下垫面条件的方式,调节植被蒸腾与土壤蒸发的分配比例,进而影响区域乃至全球水循环过程。自20世纪90年代以来,我国开展了大规模的植被恢复工程,全国植被覆盖度得到了极大提高,其中尤以黄河中游最为显著。以黄河中游6个典型植被恢复流域为研究对象,利用PML_V2模型和水文气象数据,验证了该模型模拟植被快速变化环境下的蒸散性能,并分析了2003—2018年间植被恢复工程背景下,黄河中游蒸散发(ET)及其组分(植被蒸腾Ec,截留蒸发Ei,土壤蒸发Es)的时空变化格局。结果表明:(1)对比流域水量平衡ET与PML模型结果,发现该模型在黄河中游具有较好的适用性(NSE >0.6)。(2)Ec对ET的分布格局起着主导作用,蒸散发及其组分的空间格局由夏季风作用下的植被空间分布所控制。Ec与ET的空间分布格局较为相似,Es与其相反。ET、Ec、Ei均呈显著增加趋势,Es则呈显著减小趋势,尤以流域中下游最为明显。(3)植被恢复背景下,黄河中游典型流域的蒸散发及其组分发生了明显的变化。相较于所在流域,流域中植被恢复区ET、Ec、Es、Ei分别偏高2.20%、5.86%、0.86%、7.44%,速率分别偏高-0.51 mm/a、0.55 mm/a、-1.11 mm/a、0.05 mm/a。
杨泽龙 , 李艳忠 , 梁康 , 星寅聪 , 李超凡 , 马燮铫 , 韩越 . 植被恢复背景下黄河中游及6个典型流域蒸散发及其组分变化格局[J]. 自然资源学报, 2022 , 37(3) : 816 -828 . DOI: 10.31497/zrzyxb.20220317
By changing the underlying surface conditions, vegetation change can regulate the distribution ratio of vegetation transpiration to soil evaporation, and then change the regional and even global water cycle process, and have a profound impact on the sustainable development and utilization of water resources. Since the 1990s, China has carried out a large-scale vegetation restoration project, which has greatly increased the vegetation coverage, especially in the middle reaches of the Yellow River. In this paper, six typical vegetation restoration watersheds in the middle reaches of the Yellow River Basin as the research object, using meteorological and hydrological data, verify the performance of the PML_V2 model, and analyze in the vegetation restoration project background, from 2003 to 2018, the evapotranspiration in the middle reaches of the Yellow River (ET) and its components (Ec vegetation transpiration, Ei intercept evaporation, Es soil evaporation) change pattern of space and time. (1) By comparing the results of ET and PML models, it is found that this model has good applicability in the middle reaches of the Yellow River (NSE >0.6). (2) Ec plays a leading role in the distribution pattern of ET, which is controlled by the spatial distribution of vegetation under the action of summer monsoon. The spatial distribution pattern of Ec and ET is similar, while that of Es is opposite. ET, Ec, Ei all showed a significant increasing trend, while Es showed a significant decreasing trend, especially in the middle and lower reaches of the basin. (3) In the context of vegetation restoration, ET and its components in the typical watershed of the middle reaches of the Yellow River change significantly. Compared with their located watersheds, ET, Ec, Es and Ei are 2.20%, 5.86%, 0.86% and 7.44% higher, respectively, and the rates are -0.51 mm/a, 0.55 mm/a, -1.11 mm/a and 0.05 mm/a higher, respectively.
图2 PML蒸散发产品在黄河中游6个典型流域的适用性验证Fig. 2 Validation of the applicability of PML evapotranspiration products in six typical watersheds of the Middle Yellow River |
表1 黄河中游6个典型流域的NSE值Table 1 NSE values of six typical watersheds in the Middle Yellow River |
流域 | 皇甫川 | 孤山川 | 窟野河 | 秃尾河 | 佳芦河 | 无定河 |
---|---|---|---|---|---|---|
NSE | 0.704 | 0.640 | 0.834 | 0.555 | 0.300 | 0.593 |
表2 流域中植被恢复区域ET及其组分变化情况Table 2 Regional trend slope and watershed trend slope of vegetation restoration |
Ec | Es | Ei | ET | |
---|---|---|---|---|
均值/mm | 101.09 | 291.32 | 8.54 | 400.95 |
趋势/(mm/a) | 5.53*** | -0.4 | 0.53*** | 5.66* |
注:***和*分别表示在0.001和0.05置信水平显著。 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
钱虹. 城市化进程中土地利用变化对蒸散的影响模拟. 南京: 南京信息工程大学, 2015.
[
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
张晓明, 曹文洪, 余新晓, 等. 黄土丘陵沟壑区典型流域土地利用/覆被变化的径流调节效应. 水利学报, 2009,40(6):641-650.
[
|
[12] |
魏晓华, 李文华, 周国逸, 等. 森林与径流关系: 一致性和复杂性. 自然资源学报, 2005,20(5):761-770.
[
|
[13] |
赵跃中, 穆兴民, 严宝文, 等. 延河流域植被恢复对径流泥沙的影响. 泥沙研究, 2014, (4):67-73.
[
|
[14] |
张淑兰. 土地利用和气候变化对流域水文过程影响的定量评价. 北京: 中国林业科学研究院, 2011.
[
|
[15] |
杜琦. 山西省汾河流域植被恢复对蒸散发的影响. 人民珠江, 2018,39(1):10-12, 39.
[
|
[16] |
党素珍, 闫双荣, 董国涛, 等. 2016年黄河十大孔兑及河龙区间降水特性分析. 人民黄河, 2019,41(3):11-15.
[
|
[17] |
武荣, 陈高峰, 张建兴. 黄河中游河口—龙门区间水沙变化特征分析. 中国沙漠, 2010,30(1):210-216.
[
|
[18] |
张含玉, 方怒放, 史志华. 黄土高原植被覆盖时空变化及其对气候因子的响应. 生态学报, 2016,36(13):3960-3968.
[
|
[19] |
董镱, 尹冬勤, 李渊, 等. 黄土高原植被的时空变化及其驱动力分析研究. 中国农业大学学报, 2020,25(8):60-131.
[
|
[20] |
张宝庆, 邵蕊, 赵西宁, 等. 大规模植被恢复对黄河中游生态水文过程的影响. 应用基础与工程科学学报, 2020,28(3):594-606.
[
|
[21] |
宋凤军. 皇甫川流域植被减水减沙效应的模拟研究. 杨凌: 西北农林科技大学, 2013.
[
|
[22] |
尹国康. 黄河中游多沙粗沙区水沙变化原因分析. 地理学报, 1998, 53(2): 80-83, 85-89.
[
|
[23] |
赵广举, 穆兴民, 田鹏, 等. 近60年黄河中游水沙变化趋势及其影响因素分析. 资源科学, 2012,34(6):1070-1078.
[
|
[24] |
高照良, 付艳玲, 张建军, 等. 近50年黄河中游流域水沙过程及对退耕的响应. 农业工程学报, 2013,29(6):99-105.
[
|
[25] |
|
[26] |
刘昌明, 李艳忠, 刘小莽, 等. 黄河中游植被变化对水量转化的影响分析. 人民黄河, 2016,38(10):7-12.
[
|
[27] |
|
[28] |
|
[29] |
姜艳阳, 王文, 周正昊. MODIS MOD16蒸散发产品在中国流域的质量评估. 自然资源学报, 2017,32(3):517-528.
[
|
[30] |
|
[31] |
胡珊珊, 郑红星, 刘昌明, 等. 气候变化和人类活动对白洋淀上游水源区径流的影响. 地理学报, 2012,67(1):62-70.
[
|
[32] |
|
[33] |
|
[34] |
孙兆峰, 王双银, 刘晶, 等. 秃尾河流域径流衰减驱动力因子分析. 自然资源学报, 2017,32(2):310-320.
[
|
[35] |
|
[36] |
莫兴国, 林忠辉, 刘苏峡. 气候变化对无定河流域生态水文过程的影响. 生态学报, 2007,27(6):4999-5007.
[
|
/
〈 |
|
〉 |