中亚水热资源匹配特征及敏感性分析
姚林林(1996- ),女,重庆人,硕士,研究方向为干旱半干旱区水文水资源。E-mail: yaolinlin19@mails.ucas.ac.cn |
收稿日期: 2020-11-16
要求修回日期: 2021-02-18
网络出版日期: 2022-02-16
基金资助
中国科学院战略性先导科技专项(XDA2004030202)
版权
The matching characteristics and sensitivity analysis based on the water-thermal product index for the water and thermal resources in Central Asia
Received date: 2020-11-16
Request revised date: 2021-02-18
Online published: 2022-02-16
Copyright
从水热积指数出发,基于1931—2019年Climatic Research Unit(CRU)再分析资料,运用多时序分析方法,从多时间尺度分析中亚水热资源匹配空间特征和时序变化,并进行敏感归因探究。结果表明:(1)空间上中亚水热匹配条件存在相对优劣,优势区多分布于高纬及高山高原地带,水热资源匹配较差区域分布于南部沙漠。优势区多和同期降水高值区、潜在蒸散低值区和气温低值区重合,年际水热积指数变化不明显或呈弱下降趋势;较差区域多为同期潜在蒸散和气温高值区,降水低值区,水热积指数降低且年际变幅较大。(2)中亚水热资源匹配年内存在季节差异,春秋较好、冬季次之、夏季较差;在年际尺度上,1931—1974年,水热匹配条件呈现上升趋势;1974—2000年左右,水热匹配条件波动上升;2000—2019年,水热匹配条件下降,且在1971—1980年、1981—1990年、1990—2000年发生匹配条件突变。春夏秋季水热匹配变化趋势同年际趋势大致相同,冬季波动幅度较小。(3)在春、夏及年尺度上,主导敏感性因子为平均气温因子,在秋冬两季为降水因子;在高纬、高原高山区,水热积指数变化敏感性气候因子多为降水因子;中亚南部水热积指数变化对降水敏感性减弱,平均气温敏感性增加,且北部平均气温敏感性系数绝对值略低于南部;高山高原区域对极端温度变化较为敏感。
姚林林 , 周宏飞 , 闫英杰 . 中亚水热资源匹配特征及敏感性分析[J]. 自然资源学报, 2022 , 37(2) : 538 -550 . DOI: 10.31497/zrzyxb.20220218
Based on the water-thermal product index and the reanalysis data for the period 1931-2019 obtained from Climatic Research Unit (CRU), we examined the matching spatial characteristics and temporal variation trends of the water and thermal resources in Central Asia on a time scale by using the method of multi-time series analysis, and explored the sensitive climatic factors of water-thermal matching combined with the sensitivity coefficient. The results show that: (1) the water and thermal matching conditions in Central Asia are relative merits in space, and the dominant regions are mostly distributed at high latitudes and on alpine plateaus, while the regions with poor water-thermal matching resources are distributed in the southern deserts. Most of advantageous areas coincide with the high-value area of precipitation, low-value area of potential evapotranspiration and low-value area of air temperature in the same period, and the annual change of water-thermal product index is not obvious or shows an increasing trend. The disadvantageous areas are mostly the high-value area of potential evapotranspiration and the high-value area of air temperature in the same period, while the low-value area of precipitation has a decrease of water-thermal product index and a large inter-annual variation. (2) There were seasonal differences in the matching of water-thermal resources in Central Asia, characterized by best spring and autumn, better winter, and worst summer. On the annual scale, 1931-1974, the matching conditions of water and heat presented an upward trend; 1974-2000, the water and thermal matching conditions fluctuated; 2000-2019, the water and thermal matching condition decreased, and the water-thermal matching condition mutation was observed in periods of 1971-1980, 1981-1990, and 1990-2000. The variation trend of water - thermal matching in spring, summer and autumn was roughly consistent with the inter-annual trend, while the fluctuation range in winter was relatively small. (3) The sensitivity analysis showed that mean temperature was sensitive to the water-thermal matching conditions in spring, summer and annual scale, and precipitation in winter and autumn. In the high-latitude mountains of the study area, precipitation was dominant in the sensitive climate factors. In the southern part of Central Asia, the sensitivity of precipitation factors decreases while that of mean temperature factors increases. The absolute value of mean temperature sensitivity in the northern part of the region will be lower than that in the southern part; the high-latitude mountains were sensitive to the extreme temperature variation.
表1 气候因子敏感性系数Table 1 Climate sensitivity coefficient |
时间尺度 | 降水敏感性系数 | 平均气温敏感性系数 | 最低气温敏感性系数 | 最高气温敏感性系数 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | |||||
春(3-5月) | -0.96 | 1.35 | 2.03 | 1.43 | 0.22 | 0.37 | -0.53 | 0.49 | ||||
夏(6-8月) | -0.38 | 0.24 | 3.16 | 2.08 | 0.34 | 1.37 | -0.57 | 2.68 | ||||
秋(9-11月) | -1.00 | 1.24 | 1.72 | 1.88 | -0.09 | 2.56 | 0.84 | 3.00 | ||||
冬(12至次年2月) | 0.75 | 1.13 | 0.73 | 2.73 | 0.37 | 1.42 | 0.26 | 2.98 | ||||
年 | -1.10 | 1.34 | 1.20 | 1.72 | 0.97 | 0.36 | -0.92 | 0.57 |
[1] |
|
[2] |
陈亚宁. 气候变化对西北干旱区水循环影响机理与水资源安全研究. 中国基础科学, 2015,17(2):15-21.
[
|
[3] |
|
[4] |
阮宏威, 于静洁. 1992—2015年中亚五国土地覆盖与蒸散发变化. 地理学报, 2019,74(7):1292-1304.
[
|
[5] |
|
[6] |
陈洁, 刘玉洁, 潘韬, 等. 1961—2010年中国降水时空变化特征及对地表干湿状况影响. 自然资源学报, 2019,34(11):2440-2453.
[
|
[7] |
李林, 李晓东, 校瑞香, 等. 青藏高原东北部气候变化的异质性及其成因. 自然资源学报, 2019,34(7):1496-1505.
[
|
[8] |
潘旭东, 王江丽, 吴玲, 等. 亚洲中部干旱区绿洲水热匹配与生物、农业技术适应性分析. 干旱区研究, 2019,36(1):52-57.
[
|
[9] |
孟猛, 倪健, 张治国. 地理生态学的干燥度指数及其应用评述. 植物生态学报, 2004,28(6):853-861.
[
|
[10] |
毛飞, 孙涵, 杨红龙. 干湿气候区划研究进展. 地理科学进展, 2011,30(1):17-26.
[
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
崔启武, 孙延俊. 论水热平衡联系方程. 地理学报, 1979,34(2):169-178.
[
|
[16] |
倪健, 张新时. 水热积指数的估算及其在中国植被与气候关系研究中的应用. 植物学报, 1997,39(12):1147-1159.
[
|
[17] |
柴晨好. 中亚地区农业水土资源匹配及其利用分区研究. 北京: 中国科学院大学, 2019.
[
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
/
〈 |
|
〉 |