中国红色旅游政策实施对网络关注度的空间溢出效应——基于语义分析与空间计量的实证
戴璐(1989- ),女,江西吉安人,博士,讲师,研究方向为城市网络、区域治理与旅游发展。E-mail: dailu.chn@outlook.com |
收稿日期: 2021-03-29
要求修回日期: 2021-08-12
网络出版日期: 2022-01-28
基金资助
国家社会科学基金项目(19CJL037)
版权
Spatial spillover effect of the red tourism policy on public online attention in China: An empirical study based on semantic analysis and spatial econometric model
Received date: 2021-03-29
Request revised date: 2021-08-12
Online published: 2022-01-28
Copyright
从政策供给和公众需求的双重视角对中国红色旅游发展进行研究,有助于自上而下进行旅游资源的调配优化和自下而上调整红色旅游产品的开发创新。整合2011—2019年有关红色旅游的政务服务文本、微博信息文本和中国大陆31个省份的面板数据,使用文本语义分析比较了政策实施和网络关注的差异,从政策空间关联的视角构建空间权重矩阵,应用空间面板杜宾模型,测算红色旅游政策实施对网络关注度的空间溢出效应。结果表明:(1)自上而下的红色旅游政策实施与自下而上的网络反馈之间存在差异。(2)红色旅游网络关注度具有显著的地理和政策空间依赖性,政务服务中对传播红色文化目标的重视是网络关注度空间溢出效应产生的主要原因,政策稳定性则与红色旅游网络关注度呈负相关关系,地方政府间不稳定的竞合关系和政策发展环境的低水平稳态是导致公众对红色旅游关注度不及政策预期的可能原因。(3)在地理和政策空间关联作用下,地区公共服务能力呈现出正向溢出效应,而信息化变量表现为负向溢出效应,加强区域联动和信息化融合是红色旅游政策创新的方向。
戴璐 , 白彩全 , 梁龙武 . 中国红色旅游政策实施对网络关注度的空间溢出效应——基于语义分析与空间计量的实证[J]. 自然资源学报, 2021 , 36(11) : 2778 -2796 . DOI: 10.31497/zrzyxb.20211105
This paper compares the goals and implementation effects of the red tourism policy, thus helping public policy makers to allocate and optimize tourism resources. Meanwhile, it is of great significance to help market participants to adjust the development and innovation of red tourism products. Specifically, we firstly integrate government service texts and Sina Weibo texts with the theme of "red tourism" as well as relevant statistical data to form a panel dataset of 31 provincial-level regions in China from 2011 to 2019. Then, the text semantic analysis is carried out to identify policy gap. Furthermore, the spatial weight matrices are built from the perspective of policy spatial relevance. Finally, the spatial panel Durbin model is constructed to estimate the spatial spillover effect of red tourism policy on online attention from the perspective of policy spatial correlation. The findings are as follows. (1) The policy gap exists in the development of red tourism to some extent. (2) The public online attention to the red tourism is significantly dependent on geographic and policy space. The main reason for its spillover effect is that government services attach great importance to the goal of spreading the red culture, but the stability of the policy is negatively correlated with the online attention. The unstable competition and cooperation relationship among governments and the low-level steady state of the policy development environment are possible reasons that cause the public to pay less attention to red tourism than expected. (3) Under the effect of geographical and policy spatial correlation, the regional public service capacity presents a positive spillover effect, while the information variables show a negative spillover effect. Strengthening regional cooperation and integration of information service and other elements is the direction of red tourism policy innovation.
表1 变量设定与说明Table 1 Variable description |
变量类型 | 变量名称 | 符号 | 变量描述 |
---|---|---|---|
被解释变量 | 用户态度 | lnLike | 微博用户点赞数对数值 |
关注热度 | lnHot | 微博用户转发和评论数之和的对数值 | |
核心解释变量 | 目标重视程度 | Goal | 红色旅游政策目标语义重要性,Goal1~Goal4为“文化”“教育”“服务”和“资源” |
政策稳定性 | Polco | 当年与上年的红色旅游政策相似性,衡量政策发展环境 | |
控制变量 | 互联网规模 | lnBiap | 互联网宽带接入端口对数值 |
信息化基础设施 | lnCmte | 移动电话交换机容量对数值 | |
信息技术消费水平 | lnTpts | 邮电业务总量对数值 | |
公共服务能力 | lnGovpay | 政府一般预算支出对数值 | |
交通可达性 | lnAccess | 公路里程与建成区面积之比的对数值 |
表2 不同权重矩阵下红色旅游网络关注度的全局空间自相关检验Table 2 The global spatial autocorrelation test of online attention to red tourism under different weight matrices |
年份 | 反距离空间权重矩阵Wij | 政策相似度权重矩阵Sij | 复合权重矩阵W * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ln(点赞) | ln(评论) | ln(转发) | ln(点赞) | ln(评论) | ln(转发) | ln(点赞) | ln(评论) | ln(转发) | |||
2011 | -0.052 | 0.032** | 0.026** | -0.065 | -0.014 | 0.010* | -0.058 | 0.025* | 0.021* | ||
2012 | 0.002 | 0.090*** | 0.028** | -0.054 | 0.005* | -0.034 | -0.010 | 0.088*** | 0.019* | ||
2013 | 0.026** | 0.058*** | 0.029** | 0.004* | 0.019** | 0.009* | 0.022* | 0.051** | 0.026* | ||
2014 | -0.021 | 0.010 | -0.021 | -0.025 | -0.006 | -0.021 | -0.035 | 0.000 | -0.023 | ||
2015 | 0.020* | 0.003 | -0.037 | 0.019** | -0.005 | -0.030 | 0.017* | 0.002 | -0.043 | ||
2016 | 0.060*** | 0.050*** | 0.006 | 0.025** | 0.024** | 0.035*** | 0.065*** | 0.056*** | 0.015 | ||
2017 | 0.022** | 0.061*** | 0.040** | 0.000 | 0.023** | 0.008* | 0.027** | 0.068*** | 0.045** | ||
2018 | 0.044** | 0.049*** | 0.019* | -0.012 | -0.010 | -0.014 | 0.045** | 0.050** | 0.019* | ||
2019 | -0.008 | 0.038** | 0.039** | -0.034 | -0.007 | -0.016 | -0.018 | 0.031** | 0.032** |
注:表中数值为全局Moran's I值;*、**、***分别表示在10%、5%和1%的置信水平下显著,下同。 |
表3 模型识别检验Table 3 The results of spatial panel model identification |
统计量 | lnLike | lnHot | 统计量 | lnLike | lnHot |
---|---|---|---|---|---|
复合矩阵 | |||||
LM_Spatial lag | 197.973*** | 0.211 | LR_Spatial lag | 29.610*** | 14.420 |
Robust LM_Spatial lag | 79.924*** | 13.337*** | LR_Spatial error | 47.070*** | 14.320 |
LM_Spatial error | 139.444*** | 8.456*** | Wald_Spatial lag | 74.160*** | 25.670*** |
Robust LM_Spatial error | 21.395*** | 21.582*** | Wald_Spatial error | 58.040*** | 24.950*** |
Hausman | 405.730*** | 63.380*** | |||
反距离矩阵 | |||||
LM_Spatial lag | 226.202*** | 0.055 | LR_Spatial lag | 24.060*** | 14.340 |
Robust LM_Spatial lag | 85.434*** | 15.715*** | LR_Spatial error | 41.390*** | 14.430 |
LM_Spatial error | 218.323*** | 6.879*** | Wald_Spatial lag | 48.110*** | 21.390** |
Robust LM_Spatial error | 77.554*** | 22.539*** | Wald_Spatial error | 39.000*** | 22.540** |
Hausman | 126.980*** | 70.380*** | |||
政策相似矩阵 | |||||
LM_Spatial lag | 244.348*** | 0.275 | LR_Spatial lag | 27.310*** | 20.080 |
Robust LM_Spatial lag | 90.719*** | 13.525*** | LR_Spatial error | 42.910*** | 21.120** |
LM_Spatial error | 247.463*** | 11.526*** | Wald_Spatial lag | 34.660*** | 26.460** |
Robust LM_Spatial error | 93.834*** | 24.776*** | Wald_Spatial error | 34.170*** | 25.080*** |
Hausman | 346.780*** | 84.740*** |
表4 OLS个体固定效应模型与SDM个体固定效应模型的估计结果Table 4 The regression results of OLS model and SDM model with individual fixed effects |
模型 | OLS个体固定效应 | SDM个体固定效应 | ||||||
---|---|---|---|---|---|---|---|---|
复合权重 | 反距离权重 | 政策相似权重 | ||||||
被解释变量 | lnLike | lnHot | lnLike | lnHot | lnLike | lnHot | lnLike | lnHot |
解释变量 | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
Goal1 | 0.95*** | 0.76** | 0.83*** | 0.90*** | 0.93*** | 0.96*** | 0.82*** | 0.91*** |
(2.836) | (2.256) | (3.447) | (3.241) | (3.811) | (3.442) | (3.233) | (3.126) | |
Goal2 | -0.07 | 0.09 | -0.11 | 0.03 | -0.11 | 0.04 | -0.11 | 0.05 |
(-0.434) | (0.736) | (-1.095) | (0.255) | (-1.016) | (0.351) | (-1.034) | (0.363) | |
Goal3 | -0.10 | -0.14 | -0.13 | -0.22 | -0.13 | -0.20 | -0.11 | -0.19 |
(-0.477) | (-0.994) | (-0.890) | (-1.340) | (-0.843) | (-1.149) | (-0.742) | (-1.137) | |
Goal4 | -0.19 | -0.34 | -0.21 | -0.30* | -0.21 | -0.29* | -0.18 | -0.34** |
(-0.874) | (-1.649) | (-1.526) | (-1.911) | (-1.558) | (-1.836) | (-1.319) | (-2.150) | |
Polco | -0.82* | -0.33 | -0.26 | -0.15 | -0.22 | -0.22 | -0.16 | -0.18 |
(-1.747) | (-0.718) | (-0.864) | (-0.445) | (-0.743) | (-0.635) | (-0.531) | (-0.511) | |
lnBiap | 1.92*** | 0.77** | 0.02 | 0.81 | 0.19 | 0.82 | -0.23 | 0.65 |
(3.791) | (2.319) | (0.035) | (1.639) | (0.441) | (1.635) | (-0.539) | (1.359) | |
lnGovpay | 4.44*** | -0.88 | 0.24 | -0.55 | -0.05 | -0.78 | -0.14 | -1.17 |
(3.945) | (-1.416) | (0.302) | (-0.610) | (-0.060) | (-0.880) | (-0.182) | (-1.390) | |
lnCmte | -1.30** | -0.19 | -0.71*** | -0.33 | -0.75*** | -0.30 | -0.71*** | -0.31 |
(-2.272) | (-0.815) | (-2.743) | (-1.108) | (-2.951) | (-1.010) | (-2.637) | (-1.013) | |
lnTpts | -0.36** | 0.09 | -0.56 | -0.78 | -0.57 | -0.78 | -0.55 | -0.80* |
(-2.474) | (0.592) | (-1.350) | (-1.640) | (-1.374) | (-1.642) | (-1.360) | (-1.740) | |
lnAccess | -2.87*** | -0.88 | -1.77*** | -0.60 | -1.70*** | -0.60 | -1.77*** | -0.71 |
(-2.764) | (-1.113) | (-2.775) | (-0.812) | (-2.700) | (-0.827) | (-2.842) | (-0.990) | |
W×Goal1 | -1.00 | 1.42 | 1.35 | 3.06 | -0.65 | 4.56* | ||
(-0.915) | (1.110) | (0.707) | (1.347) | (-0.273) | (1.652) | |||
W×Goal2 | -0.75 | -0.51 | -0.82 | -0.89 | -0.5 | -0.06 | ||
(-1.321) | (-0.777) | (-0.809) | (-0.768) | (-0.393) | (-0.041) | |||
W×Goal3 | -0.49 | -1.27 | -0.94 | -1.58 | -1.68 | -2.12 | ||
(-0.685) | (-1.528) | (-0.720) | (-1.048) | (-1.066) | (-1.164) | |||
W×Goal4 | 0.82* | 0.53 | 1.27 | 1.47 | 2.04* | 0.57 | ||
(1.760) | (0.995) | (1.444) | (1.478) | (1.714) | (0.424) | |||
W×Polco | -1.01 | -1.64* | -0.73 | -3.08** | -0.04 | -3.47** | ||
(-1.357) | (-1.903) | (-0.646) | (-2.253) | (-0.033) | (-2.305) | |||
W×lnBiap | -0.70 | -0.22 | -1.51 | 1.01 | -2.39* | 1.07 | ||
(-0.917) | (-0.259) | (-1.400) | (0.850) | (-1.671) | (0.758) | |||
W×lnGovpay | 6.55*** | -0.18 | 8.70*** | -2.79 | 12.33*** | -3.39 | ||
(3.807) | (-0.112) | (3.100) | (-1.120) | (3.519) | (-1.172) | |||
W×lnCmte | -0.45 | 1.18 | -1.05 | 1.19 | -0.86 | 3.42 | ||
(-0.357) | (0.800) | (-0.561) | (0.547) | (-0.436) | (1.504) | |||
W×lnTpts | 0.29 | 0.86 | 0.26 | 1.08* | -0.12 | 0.75 | ||
(0.609) | (1.600) | (0.500) | (1.878) | (-0.229) | (1.430) | |||
W×lnAccess | 3.86 | 3.20 | 5.04 | 5.67 | 0.13 | 1.84 | ||
(1.458) | (1.092) | (1.284) | (1.302) | (0.028) | (0.382) | |||
ρ | 0.48*** | 0.24* | 0.49*** | 0.25* | 0.36** | 0.02 | ||
(5.195) | (1.920) | (4.263) | (1.654) | (2.457) | (0.121) | |||
sigma2_e | 0.51*** | 0.67*** | 0.51*** | 0.67*** | 0.51*** | 0.66*** | ||
(11.730) | (11.790) | (11.745) | (11.795) | (11.777) | (11.811) | |||
Observations | 279 | 279 | 279 | 279 | 279 | 279 | 279 | 279 |
R2 | 0.802 | 0.111 | 0.325 | 0.047 | 0.349 | 0.112 | 0.285 | 0.095 |
注:括号内为t统计量,下同。 |
表5 SDM空间个体固定效应的分解结果Table 5 The decomposed effects of SDM model with individual fixed effects |
变量 | 效应 | Goal1 | Goal2 | Goal3 | Goal4 | Polco | lnBiap | lnGovpay | lnCmte | lnTpts | lnAccess |
---|---|---|---|---|---|---|---|---|---|---|---|
复合权重矩阵 | |||||||||||
lnLike | 直接效应 | 0.81*** | -0.16 | -0.14 | -0.17 | -0.32 | 0.01 | 0.58 | -0.78*** | -0.54 | -1.57** |
(2.890) | (-1.437) | (-0.954) | (-1.272) | (-1.078) | (0.028) | (0.735) | (-2.786) | (-1.364) | (-2.261) | ||
间接效应 | -1.13 | -1.50 | -1.12 | 1.39 | -2.25 | -1.22 | 12.58*** | -1.87 | 0.05 | 6.13 | |
(-0.507) | (-1.168) | (-0.847) | (1.438) | (-1.538) | (-0.863) | (4.644) | (-0.699) | (0.090) | (1.061) | ||
总效应 | -0.32 | -1.66 | -1.26 | 1.21 | -2.57* | -1.20 | 13.16*** | -2.65 | -0.48 | 4.56 | |
(-0.132) | (-1.241) | (-0.900) | (1.190) | (-1.652) | (-0.810) | (4.534) | (-0.930) | (-1.174) | (0.744) | ||
lnHot | 直接效应 | 0.95*** | 0.02 | -0.23 | -0.30* | -0.19 | 0.85* | -0.56 | -0.33 | -0.74 | -0.51 |
(3.180) | (0.130) | (-1.430) | (-1.956) | (-0.554) | (1.713) | (-0.608) | (-1.146) | (-1.625) | (-0.683) | ||
间接效应 | 2.10 | -0.58 | -1.78* | 0.62 | -2.25** | -0.01 | -0.35 | 1.16 | 0.87 | 4.17 | |
(1.266) | (-0.629) | (-1.663) | (0.840) | (-2.013) | (-0.011) | (-0.174) | (0.611) | (1.577) | (1.017) | ||
总效应 | 3.05* | -0.57 | -2.01* | 0.32 | -2.43** | 0.84 | -0.91 | 0.83 | 0.13 | 3.66 | |
(1.682) | (-0.591) | (-1.771) | (0.416) | (-2.051) | (0.733) | (-0.412) | (0.411) | (0.447) | (0.841) | ||
反距离权重矩阵 | |||||||||||
lnLike | 直接效应 | 1.01*** | -0.15 | -0.16 | -0.17 | -0.26 | 0.17 | 0.28 | -0.84*** | -0.55 | -1.48** |
(3.318) | (-1.124) | (-0.879) | (-1.192) | (-0.866) | (0.392) | (0.359) | (-2.937) | (-1.384) | (-2.079) | ||
间接效应 | 3.73 | -1.72 | -2.08 | 2.32 | -1.85 | -2.55 | 16.86*** | -3.55 | 0.03 | 9.31 | |
(0.824) | (-0.696) | (-0.812) | (1.186) | (-0.768) | (-1.199) | (3.849) | (-0.810) | (0.047) | (0.961) | ||
总效应 | 4.74 | -1.87 | -2.24 | 2.14 | -2.11 | -2.37 | 17.15*** | -4.40 | -0.52 | 7.83 | |
(1.002) | (-0.730) | (-0.833) | (1.063) | (-0.844) | (-1.068) | (3.787) | (-0.962) | (-0.835) | (0.777) | ||
lnHot | 直接效应 | 1.02*** | 0.03 | -0.21 | -0.27* | -0.26 | 0.87* | -0.83 | -0.30 | -0.75 | -0.49 |
(3.388) | (0.206) | (-1.169) | (-1.759) | (-0.786) | (1.731) | (-0.913) | (-1.073) | (-1.626) | (-0.668) | ||
间接效应 | 4.35 | -1.06 | -2.26 | 1.94 | -4.29** | 1.66 | -3.87 | 1.04 | 1.18* | 7.73 | |
(1.448) | (-0.624) | (-1.117) | (1.272) | (-2.321) | (1.046) | (-1.171) | (0.351) | (1.921) | (1.199) | ||
总效应 | 5.37* | -1.04 | -2.47 | 1.67 | -4.55** | 2.53 | -4.70 | 0.73 | 0.44 | 7.24 | |
(1.703) | (-0.585) | (-1.163) | (1.064) | (-2.385) | (1.554) | (-1.362) | (0.239) | (1.147) | (1.083) | ||
政策相似权重矩阵 | |||||||||||
lnLike | 直接效应 | 0.83*** | -0.13 | -0.14 | -0.14 | -0.16 | -0.24 | 0.12 | -0.77*** | -0.53 | -1.73** |
(2.706) | (-1.064) | (-0.861) | (-0.985) | (-0.551) | (-0.571) | (0.166) | (-2.629) | (-1.371) | (-2.574) | ||
间接效应 | -0.52 | -0.78 | -2.95 | 3.18 | -0.39 | -3.57 | 19.03*** | -2.55 | -0.43 | 0.28 | |
(-0.120) | (-0.336) | (-1.130) | (1.490) | (-0.187) | (-1.639) | (4.250) | (-0.629) | (-0.704) | (0.034) | ||
总效应 | 0.3 | -0.91 | -3.09 | 3.04 | -0.55 | -3.82* | 19.15*** | -3.32 | -0.96* | -1.45 | |
(0.066) | (-0.381) | (-1.141) | (1.377) | (-0.255) | (-1.686) | (4.146) | (-0.784) | (-1.884) | (-0.167) | ||
lnHot | 直接效应 | 0.93*** | 0.04 | -0.17 | -0.35** | -0.17 | 0.69 | -1.17 | -0.32 | -0.78* | -0.68 |
(3.066) | (0.324) | (-1.089) | (-2.279) | (-0.520) | (1.420) | (-1.352) | (-1.127) | (-1.734) | (-0.959) | ||
间接效应 | 4.78 | 0.04 | -2.25 | 0.59 | -3.63*** | 1.16 | -3.48 | 3.22 | 0.75 | 2.16 | |
(1.581) | (0.027) | (-1.246) | (0.398) | (-2.620) | (0.762) | (-1.193) | (1.397) | (1.447) | (0.403) | ||
总效应 | 5.71* | 0.08 | -2.43 | 0.25 | -3.80*** | 1.85 | -4.65 | 2.90 | -0.03 | 1.48 | |
(1.791) | (0.049) | (-1.299) | (0.161) | (-2.656) | (1.188) | (-1.523) | (1.205) | (-0.100) | (0.268) |
[1] |
冯凌. 论红色旅游的多功能性与社会主义核心价值观传播. 求是, 2012, (6):94-96.
[
|
[2] |
刘瑜, 詹朝晖, 朱递, 等. 集成多源地理大数据感知城市空间分异格局. 武汉大学学报: 信息科学版, 2018, 43(3):327-335.
[
|
[3] |
黄震方, 葛军莲, 储少莹. 国家战略背景下旅游资源的理论内涵与科学问题. 自然资源学报, 2020, 35(7):1511-1524.
[
|
[4] |
陈哲, 龙茂兴. 户外旅游网络关注度时空特征研究. 地理与地理信息科学, 2020, 36(5):81-85, 94.
[
|
[5] |
舒丽, 张凯, 王小秋, 等. 基于百度指数的我国体育旅游网络关注度研究. 北京体育大学学报, 2020, 43(6):110-122.
[
|
[6] |
陈玉萍, 刘嘉毅, 郭修金. 基于网络关注度的中国冰雪旅游产业发展启示. 天津体育学院学报, 2020, 35(5):519-524.
[
|
[7] |
静恩明, 郭风华, 李仁杰, 等. 基于新浪旅游博客的河北省A级景区网络关注度研究. 地理与地理信息科学, 2015, 31(3):118-122.
[
|
[8] |
方叶林, 程雪兰, 黄震方, 等. 国家重点风景名胜区网络关注度与游客量的错位特征及机理. 经济地理, 2020, 40(4):204-213.
[
|
[9] |
邓向荣, 冯学良, 李仲武. 网络关注度对企业创新激励效应的影响机制研究: 基于中国A股上市公司数据的实证分析. 中央财经大学学报, 2020, (9):93-106.
[
|
[10] |
琚胜利, 陶卓民, 钱进. 基于游客网络关注度的南京市农家乐、旅游农庄空间集聚研究. 中国农业资源与区划, 2018, 39(12):262-268.
[
|
[11] |
吴妙薇, 张建国, 崔会平, 等. 诸葛八卦村游客行为特征与旅游体验评价研究: 基于百度指数和网络文本分析. 中国农业资源与区划, 2019, 40(12):259-267.
[
|
[12] |
王璐玮, 夏四友, 储姗姗, 等. 上海与周边客源地间的旅游业经济联系: 基于微博受众群体短期出行类型分析. 长江流域资源与环境, 2019, 28(8):1811-1822.
[
|
[13] |
蔡卫民, 彭晶, 覃娟娟. 韶山的全国网络关注热度矩阵及推广策略研究. 旅游科学, 2016, 30(4):61-72.
[
|
[14] |
黄文胜. 基于百度指数的广西旅游网络关注率矩阵及营销策略研究. 地域研究与开发, 2019, 38(5):101-104.
[
|
[15] |
陆利军, 廖小平, 戴湘毅. 国家森林公园网络关注度的空间关联结构研究. 中南林业科技大学学报, 2019, 39(12):137-147.
[
|
[16] |
高楠, 张新成, 王琳艳. 中国红色旅游网络关注度时空特征及影响因素. 自然资源学报, 2020, 35(5):1068-1089.
[
|
[17] |
李磊, 陶卓民, 赖志城, 等. 长征国家文化公园红色旅游资源网络关注度及其旅游流网络结构分析. 自然资源学报, 2021, 36(7):1811-1824.
[
|
[18] |
唐鸿, 许春晓. 中国红色旅游经典景区网络关注度时空演变及影响因素. 自然资源学报, 2021, 36(7):1792-1810.
[
|
[19] |
刘梓汐, 罗盛锋. 我国红色旅游研究进展及趋势: 基于CiteSpace计量分析 (2009—2019). 社会科学家, 2020, (11):44-49.
[
|
[20] |
韩广富, 刘心蕊. 改革开放以来革命老区扶贫脱贫的历史进程及经验启示. 当代中国史研究, 2019, 26(1):101-115, 159.
[
|
[21] |
尚子娟, 任禹崑. 乡村红色文化与旅游发展模式探析. 学术交流, 2021, (4):111-122.
[
|
[22] |
|
[23] |
徐换歌, 蒋硕亮. 国家创新型城市试点政策的效果以及空间溢出. 科学学研究, 2020, 38(12):2161-2170.
[
|
[24] |
黄锐, 谢朝武, 李勇泉. 中国文化旅游产业政策演进及有效性分析: 基于2009—2018年政策样本的实证研究. 旅游学刊, 2021, 36(1):27-40.
[
|
[25] |
张凤荣. 大数据社会治理研究的理论进展与政策堕距分析. 学海, 2018, (2):36-42.
[
|
[26] |
|
[27] |
施聪莺, 徐朝军, 杨晓江. TFIDF算法研究综述. 计算机应用, 2009, 29(s1):167-170, 180.
[
|
[28] |
胡昌平, 陈果. 领域知识网络的层次结构与微观形态探证: 基于k-core层次划分的共词分析方法. 情报学报, 2014, 33(2):130-139.
[
|
[29] |
|
[30] |
|
[31] |
|
[32] |
王龙杰, 曾国军, 毕斗斗. 信息化对旅游产业发展的空间溢出效应. 地理学报, 2019, 74(2):366-378.
[
|
[33] |
朱林芳, 周燕, 马慧强. 中国省域旅游公共服务与旅游效率耦合协调分析. 经济问题, 2020, (11):95-102.
[
|
[34] |
|
[35] |
|
[36] |
王火根, 沈利生. 中国经济增长与能源消费空间面板分析. 数量经济技术经济研究, 2007, (12):98-107, 149.
[
|
[37] |
叶光宇, 韩广富. 全国红色旅游政策发展的阶段性特征及嬗变. 社会科学家, 2020, (8):70-75.
[
|
[38] |
李冬娜. 基于核心价值观塑造的红色旅游发展路径. 社会科学家, 2019, (2):75-81, 93.
[
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
王浦劬, 赖先进. 中国公共政策扩散的模式与机制分析. 北京大学学报: 哲学社会科学版, 2013, 50(6):14-23.
[
|
[46] |
孙佼佼, 郭英之, 杨昀. 中国城市旅游政策何以变迁: 基于苏州的清晰集定性比较分析(csQCA). 经济地理, 2021, https://kns.cnki.net/kcms/detail/43.1126.K.20210108.1553.004.html
[
|
[47] |
孙佼佼, 郭英之. 红色旅游地资源的网络空间多维生产模式研究: 基于沙家浜的数字田野实证. 自然资源学报, 2021, 36(7):1749-1759.
[
|
[48] |
林明水, 鄢沂, 曾春水, 等. 中央苏区红色旅游资源跨区域整合开发研究: 文化生态学视角. 自然资源学报, 2021, 36(7):1734-1748.
[
|
[49] |
许春晓, 唐慧, 孟圆圆, 等. 湖南红色旅游资源的共生势能. 自然资源学报, 2021, 36(7):1718-1733.
[
|
/
〈 |
|
〉 |