资源生态

鄱阳湖碟形湖泊(常湖池)春季苔草生物量遥感估算

展开
  • 1. 中国科学院地理科学与资源研究所,北京 100101;
    2. 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室,南昌 330022
饶滴滴(1993- ),女,江西广昌人,博士研究生,主要从事土地利用变化与遥感应用研究。E-mail: raodidijxnu@163.com

收稿日期: 2019-01-04

  修回日期: 2019-05-30

  网络出版日期: 2019-09-28

基金资助

国家自然科学基金项目(41361104,41471088,41701212); 江西省重大生态安全问题监控协同创新中心项目(JXS-EW-00)

Remote sensing estimation of spring Carex biomass in Changhuchi Lake, a shallow sub-lake of Poyang Lake

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China

Received date: 2019-01-04

  Revised date: 2019-05-30

  Online published: 2019-09-28

摘要

基于Sentinel-2植被指数,应用回归分析法分析了鄱阳湖碟形子湖泊(常湖池)的苔草(Carex)群落生物量与植被指数的关系,并探讨了高程水位和气温变化对其的影响。研究结果表明:(1)10种常用的植被指数中,土壤调节植被指数(Soil Adjusted Vegetation Index,SAVI)是常湖池苔草春季生长中后期(3月22日至5月5日)地上生物量估算的最佳植被指数,SAVI构建的三次多项式是常湖池苔草地上生物量最优遥感估算模型,其均方根误差为73.91 g/m2,预测吻合度为71.90%,苔草生物量分布总体表现为自湖心到湖岸逐渐增加。(2)3月22日(春季苔草生长中期)和5月5日(春季苔草生长后期)苔草的地上总生物量分别为1.06×105 kg和3.28×105 kg,单位面积苔草生物量分别为77.56 g/m2和208.44 g/m2,这与鄱阳湖其他子湖单位面积生物量一般低于300 g/m2相一致。(3)常湖池苔草生长受高程、水位和气温多重要素综合影响。3月底常湖池13.47 m高程(黄海高程,参考星子站水位,下同)以下苔草植株矮小,生物量积累较少;13.47 m高程以上区域受前期低温胁迫,生物量增长缓慢。随着气温回暖,出露区域的苔草生物量逐渐积累,并随高程增加而增长。

本文引用格式

饶滴滴, 于秀波, 李鹏, 夏少霞, 孟竹剑, 刘影 . 鄱阳湖碟形湖泊(常湖池)春季苔草生物量遥感估算[J]. 自然资源学报, 2019 , 34(9) : 2001 -2011 . DOI: 10.31497/zrzyxb.20190915

Abstract

The relationship between community biomass of spring Carex and Sentinel-2 derived vegetation indices (VIs) was analyzed using regression analysis in one of dish-shaped lakes (i.e. Changhuchi) of Poyang Lake. In addition, the effects of elevation, water level, and temperature changes on community biomass were also examined. The results showed that: (1) Among the 10 commonly used VIs, Soil Adjusted Vegetation Index (SAVI) is the most appropriate VI for spring Carex biomass estimation of Changhuchi Lake from March 22nd to May 5th. The cubic polynomial parameterized by SAVI was an optimal biomass estimation model with the root mean square error of 73.91 g/m2 and the predicted coincidence of 71.90%. Spatially, the biomass of spring Carex community generally increased from the central part to lakeshore. (2) On March 22nd (normally in the middle of growth) and May 5th (the end of growth), the total aboveground biomass of spring Carex grass was 1.06×105 kg and 3.28×105 kg, respectively, along with the biomass per unit area of 77.56 g/m2 and 208.44 g/m2, respectively. Our estimates were basically in line with the previously reported upper limit of 300 g/m2 in other sub-lakes within Poyang Lake. (3) The growth of spring Carex in Changhuchi Lake is jointly affected by elevation, water level and air temperature. At the end of March, the area below 13.47 m (Yellow Sea Datum) in Changhuchi Lake is generally flooded, hence with dwarf plants and less biomass accumulation. For the regions above 13.47 m, the biomass is also at a low level due to low temperature and short dormancy. As the temperature rises, the biomass of spring Carex in the whole exposed area of Changhuchi Lake gradually accumulates with larger per unit area biomass at the higher elevations.

参考文献

[1] 王树功, 黎夏, 周永章. 湿地植被生物量测算方法研究进展. 地理与地理信息科学, 2004, 20(5): 104-109.
[WANG S G, LI X, ZHOU Y Z.Progress of method for wetland vegetation biomass. Geography and Geo-Information Science, 2004, 20(5): 104-109.]
[2] 叶春, 赵晓松, 吴桂平, 等. 鄱阳湖自然保护区植被生物量时空变化及水位影响. 湖泊科学, 2013, 25(5): 707-714.
[YE C, ZHAO X S, WU G P, et al.Vegetation biomass spatial-temporal variations and the influence of the water level in Poyang Lake National Nature Reserve. Journal of Lake Sciences, 2013, 25(5): 707-714.]
[3] 李仁东, 刘纪远. 应用Landsat ETM数据估算鄱阳湖湿生植被生物量. 地理学报, 2001, 56(5): 532-540.
[LI R D, LIU J Y.An estimation of wetland vegetation biomass in the Poyang Lake using Landsat ETM data. Acta Geographica Sinica, 2001, 56(5): 532-540.]
[4] 谭清梅, 刘红玉, 张华兵, 等. 盐城海滨湿地植被地上生物量遥感估算研究. 自然资源学报, 2013, 28(12): 2044-2055.
[TAN Q M, LIU H Y, ZHANG H B, et al.An estimation of aboveground vegetation biomass in coastal wetland of Yancheng Natural Reserve. Journal of Natural Resources, 2013, 28(12): 2044-2055.]
[5] 刘莉, 韩美, 刘玉斌, 等. 黄河三角洲自然保护区湿地植被生物量空间分布及其影响因素. 生态学报, 2017, 37(13): 4346-4355.
[LIU L, HAN M, LIU Y B, et al.Spatial distribution of wetland vegetation biomass and its influencing factors in the Yellow River Delta Nature Reserve. Acta Ecologica Sinica, 2017, 37(13): 4346-4355.]
[6] 郑阳, 吴炳方, 张淼. Sentinel-2数据的冬小麦地上干生物量估算及评价. 遥感学报, 2017, 21(2): 318-328.
[ZHENG Y, WU B F, ZHANG M.Estimating the above ground biomass of winter wheat using the Sentinel-2 data. Journal of Remote Sensing, 2017, 21(2): 318-328.]
[7] 张全军, 于秀波, 胡斌华. 鄱阳湖南矶湿地植物群落分布特征研究. 资源科学, 2013, 35(1): 42-49.
[ZHANG Q J, YU X B, HU B H.Research on the characteristics of plant communities in the Poyang Nanji Wetlands, China. Resources Science, 2013, 35(1): 42-49.]
[8] 胡振鹏, 张祖芳, 刘以珍, 等. 碟形湖在鄱阳湖湿地生态系统的作用和意义. 江西水利科技, 2015, 41(5): 317-323.
[HU Z P, ZHANG Z F, LIU Y Z, et al.The function and significance of the shallow-lakes in the Poyang Lake wetland ecosystem. Jiangxi Hydraulic Science & Technology, 2015, 41(5): 317-323.]
[9] 张广帅, 于秀波, 刘宇, 等. 鄱阳湖碟形湖泊植物分解和水位变化对水体碳、氮浓度的叠加效应. 湖泊科学, 2018, 30(3): 668-679.
[ZHANG G S, YU X B, LIU Y, et al.Accumulation effect of litter decomposition and water level on carbon and nitrogen in shallow lake water of Lake Poyang. Journal of Lake Sciences, 2018, 30(3): 668-679.]
[10] 黄金国, 郭志永. 鄱阳湖湿地生物多样性及其保护对策. 水土保持研究, 2007, 14(1): 305-306.
[HUANG J G, GUO Z Y.The wetland biodiversity and its conservation countermeasures in the Poyang Lake. Research of Soil and Water Conservation, 2007, 14(1): 305-306.]
[11] 葛刚, 纪伟涛, 刘成林, 等. 鄱阳湖水利枢纽工程与湿地生态保护. 长江流域资源与环境, 2010, 19(6): 606-613.
[GE G, JI W T, LIU C L, et al.Hydraulic project and wetland ecological protection in Poyang Lake. Resources and Environment in the Yangtze Basin, 2010, 19(6): 606-613.]
[12] 熊舒, 纪伟涛, 伍旭东, 等. 气温与水位对鄱阳湖越冬雁属鸟类数量变化影响分析: 以大湖池、常湖池和朱市湖为例. 南方林业科学, 2011, (1): 1-5.
[XIONG S, JI W T, WU X D, et al.Analysis of effect of temperature & water level on the number variation of the over-wintering Anser species in Poyang Lake: A case study in Dahuchi Lake, Changhuchi Lake and Zhushihu Lake. South China Forestry Science, 2011, (1): 1-5.]
[13] 吴朝阳, 牛铮. 基于辐射传输模型的高光谱植被指数与叶绿素浓度及叶面积指数的线性关系改进. 植物学通报, 2008, 25(6): 714-721.
[WU C Y, NIU Z.Improvement in linearity between hyperspectral vegetation indices and chlorophyll content, leaf area index based on Radiative Transfer Models. Chinese Bulletin of Botany, 2008, 25(6): 714-721.]
[14] HUETE A R.A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 1988, 69(25): 295-309.
[15] DASH J C P J. The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 2004, 25(23): 5403-5413.
[16] HUETE A, DIDAN K, MIURA T, et al.Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002, 83(1): 195-213.
[17] JORDAN C F.Derivation of leaf-area index from quality of light on the forest floor. Ecological Society of America Stable. 1969, 50(4): 663-666.
[18] SIMS D A, GAMON J A.Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 83(2): 337-354.
[19] ROUSE J W JR H R H S. Monitoring vegetation systems in the great plains with ERTS. In: Proceedings of the 3rd ERTS-1 Symposium. Washington DC: NASA, 1974: 309-317.
[20] GITELSON A A.Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 2005, 32(8), L08403, Doi: 10.1029/2005GL022688.
[21] CHEN J M.Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 1996: 22(3): 229-242.
[22] WU C, NIU Z, TANG Q, et al.Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 2008, 148(8-9): 1230-1241.
[23] 沈掌泉, 周斌, 孔繁胜, 等. 应用广义回归神经网络进行土壤空间变异研究. 土壤学报, 2004, 41(3): 471-475.
[SHEN Z Q, ZHOU B, KONG F S, et al.Study on spatial variety of soil properties by means of generalized regression neural network. Acta Pedologica Sinica, 2004, 41(3): 471-475.]
[24] 马玉良, 许明珍, 佘青山, 等. 基于自适应阈值的脑电信号去噪方法. 传感技术学报, 2014, 27(10): 1368-1372.
[MA Y L, XU M Z, SHE Q S, et al.De-Noising method of the EEG based on adaptive threshold. Chinese Journal of Sensors and Actuators, 2014, 27(10): 1368-1372.]
[25] 谭志强, 张奇, 李云良, 等. 鄱阳湖湿地典型植物群落沿高程分布特征. 湿地科学, 2016, 14(4): 506-515.
[TAN Z Q, ZHANG Q, LI Y L, et al.Distribution of typical vegetation communities along elevation in Poyang Lake Wetlands. Wetland Science, 2016, 14(4): 506-515.]
[26] 吉文丽, 李卫忠, 王成吉, 等. 苔草属植物种子休眠与萌发研究现状. 草原与草坪, 2009, (2): 98-102.
[JI W L, LI W Z, WANG C J, et al.A review: Seeds dormancy and germination of genus Carex speices. Grassland and Turf, 2009, (2): 98-102.]
[27] VINCINI M, CALEGARI F, CASA R.Sensitivity of leaf chlorophyll empirical estimators obtained at Sentinel-2 spectral resolution for different canopy structures. Precision Agriculture, 2016, 17(3): 313-331.
[28] 方圣辉, 乐源, 杨光. 基于HyperScan成像光谱数据的植被叶绿素反演. 国土资源遥感, 2013, 25(4): 40-47.
[FANG S H, LE Y, YANG G.Inversion of chlorophyll content based on HyperScan imaging spectral data. Remote Sensing for Land & Resources, 2013, 25(4): 40-47.]
[29] 方灿莹, 王琳, 徐涵秋. 不同植被红边指数在城市草地健康判别中的对比研究. 地球信息科学学报, 2017, 19(10): 1382-1392.
[FANG C Y, WANG L, XU H Q.A comparative study of different red edge indices for remote sensing detection of urban grassland health status. Journal of Geo-Information Science, 2017, 19(10): 1382-1392.]
文章导航

/