其他研究论文

土地利用转型背景下的乡村景观格局演变响应——基于草堂溪流域的样带分析

  • 李明珍 , 1 ,
  • 李阳兵 , 1, 2 ,
  • 冉彩虹 1
展开
  • 1.重庆师范大学地理与旅游学院,重庆 401331
  • 2.三峡库区地表过程与环境遥感重庆市重点实验室,重庆 401331
李阳兵(1968- ),男,重庆潼南人,博士,教授,主要从事土地利用与生态过程研究。E-mail:

李明珍(1993- ),女,陕西安康人,硕士,主要从事水土保持与土地利用研究。E-mail:

收稿日期: 2019-04-25

  要求修回日期: 2019-07-31

  网络出版日期: 2020-11-27

基金资助

重庆市基础研究与前沿探索项目(cstc2018jcyjA1934)

重庆市教育委员会人文社会科学研究项目(19JD026)

重庆师范大学研究生科研创新项目(CYS19293)

Evolution of rural landscape pattern under the background of land use transformation: Based on the transect analysis of Caotangxi watershed

  • LI Ming-zhen , 1 ,
  • LI Yang-bing , 1, 2 ,
  • RAN Cai-hong 1
Expand
  • 1. School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China
  • 2. Key Laboratory of Surface Process and Environment Remote Sensing in the ThreeGorges Reservoir Area, Chongqing 401331, China

Received date: 2019-04-25

  Request revised date: 2019-07-31

  Online published: 2020-11-27

Copyright

《自然资源学报》编辑部 所有

摘要

研究山区土地利用转型背景下乡村景观格局演变与转型,对山区现代化农业可持续发展和景观格局优化具有一定的指导意义。以三峡库区草堂溪流域为研究对象,利用ArcGIS 10.2和Fragstats 4.2软件,采用样带梯度分析结合景观格局分析方法,基于地形和社会经济因素,分别在河谷地区和山地丘陵地区设置5条样带,对研究区2000—2018年不同方向样带上景观格局梯度演变和驱动机制进行分析比较。结果表明:(1)景观类型整体变化幅度大致可分为较稳定型、逐年递减型和波动递增型,且景观转型的重点主要体现在耕地收缩、果园扩张和林地恢复性增长。(2)2000—2018年,研究区河谷地区的景观类型逐渐多样化,土地利用集聚,呈现空间集约化;而山地丘陵地区景观类型逐渐单一化,林地恢复。整体上由生产型景观格局转型成生态经济型、生态调节型为主的景观格局。(3)社会经济发展和政府政策导向等因素导致研究区内土地利用发生转型,在土地利用转型背景下的乡村景观格局也发生了相应的转变。研究结果可为类似山区土地资源的合理利用、生态治理和乡村振兴提供借鉴价值。

本文引用格式

李明珍 , 李阳兵 , 冉彩虹 . 土地利用转型背景下的乡村景观格局演变响应——基于草堂溪流域的样带分析[J]. 自然资源学报, 2020 , 35(9) : 2283 -2298 . DOI: 10.31497/zrzyxb.20200919

Abstract

Under the background of land use transformation in mountainous areas, the study on the evolution and transformation of rural landscape pattern has certain guiding significance for the sustainable development of modern agriculture and the optimization of landscape pattern in the same areas. This paper takes the Caotangxi watershed in the Three Gorges Reservoir area as the research object, using transect gradient analysis combined with landscape pattern analysis method, with the aid of ArcGIS 10.2 and Fragstats 4.2 software. Based on the topography and economic factors, five strips are set in the valley area and the mountainous/hilly areas to analyze and compare the gradient evolution and driving mechanism of the landscape pattern in different directions of the study area from 2000 to 2018. Results showed that: (1) The overall change of landscape types can be identified into relatively stable, decreasing year by year, and increasing fluctuations. The emphasis of landscape transformation is mainly reflected in the contraction of farmland, expansion of orchards, and restorative growth of forest land. (2) From 2000 to 2018, the landscape types in the valley of the study area were gradually diversified. Land use agglomeration showed a pattern of spatial intensification, while the landscape types in the mountainous and hilly areas gradually became simplistic and the forest land was restored. On the whole, the landscape pattern of production was transformed into a landscape pattern dominated by ecological economy and ecological regulation. (3) Social and economic development and agricultural policies have led to the land use transformation in the study area. Meanwhile, the rural landscape pattern has undergone a corresponding transformation in the context of land use transformation. The research results provide reference value for the rational use of mountainous land resources, ecological management and rural revitalization.

土地利用转型作为土地利用/覆盖变化研究的新领域,逐步进入国际学术视野,取得了较为丰硕的研究成果[1,2,3]。随着经济发展与现代农业、工业化和人口城镇化的深入推进,人们对土地的开发利用强度使得土地利用发生剧烈变化,加速了土地利用转型。快速的土地利用转型对生态环境影响很大,直接导致景观格局变化[4,5,6,7]。如中国土地利用管理引领地球变绿[8];而景观格局的变化又是土地利用变化最突出的标志[9,10]。在泰国北部农村地区土地利用正在发生快速变化,经济作物的种植改变了当地的土地利用变化和景观形态,农村经济也有不同程度的提高[11];而在中国贵州的苗族村庄和侗族村庄实施的退耕还林计划结果显示,位于较高和较陡地区的苗族村庄其重新造林影响更为显著[12]。因此,在快速的社会经济发展和土地利用转型背景下,乡村景观格局如何演变是值得研究的重要问题。
景观格局主要体现景观结构组成和空间配置特征[13],景观格局演变对于景观信息的动态把握和定量预测有积极作用[14];而样带梯度分析方法能够体现研究对象空间分布特征,曾有效地用于研究城市化对植物分布[15]和生态系统[16]的影响。因此,近年来不少学者将梯度分析和景观格局分析两者结合,基于“十”字形样带[17]或沿东西和南北方向选取样带[18],或者沿城市扩展轴[19]和道路扩展轴[20],或基于景观格局指数和移动窗口相结合的方法[21,22]进行了景观梯度格局研究;研究对象包括中心城市、城乡之间、绿洲、流域等自然地理单元[23],对城市化与生态系统[24]、景观格局和土地利用变化[25]、城市—乡村的景观格局空间梯度[26,27]等进行了探索。但这些研究多集中于快速城镇化进程对区域景观格局的影响,或者是城乡之间的景观格局变化;其土地利用空间分布研究多以省市等大尺度区域为研究对象,而对山区乡镇等较小尺度上的土地利用与景观格局空间演变研究较少,尤其是对流域尺度下样带所反映出来的乡村景观格局演变关注度较低,缺乏土地利用转型背景下的乡村景观格局演变研究。
三峡库区耕地撂荒[28]与耕—果转换明显[29],探讨土地利用转型背景下的乡村景观格局演变对揭示库区人地关系和生态建设优化具有重要意义。基于此,本文选取三峡库区典型流域——草堂溪为研究区,以典型样带不同时期的土地利用变化过程作为研究对象,探讨研究区土地利用类型时空演变过程,深入挖掘乡村土地利用转型背景下的景观格局是否发生相应转型,并揭示其影响景观格局转型的驱动机制和现实意义,以此为三峡库区等典型山区土地利用变化的未来方向和景观格局优化提供科学依据,其研究成果也将为未来类似的特殊地理环境生态建设提供重要参考。

1 研究方法与数据来源

1.1 研究区概况

本文选取三峡库区腹地长江北岸一级支流草堂溪流域为研究对象(图1),该流域位于重庆市奉节县东北部(109°31'03″~109°45'20″E,31°02'40″~31°10'06″N),河流长 33.3 km,幅员面积191.5 km2。该流域的主要地貌类型以低山沟谷或中低山为主,山高坡陡,坡度>15°的面积占研究区86.6%以上,500~1500 m高程范围达77.38%以上[30]。属于典型山区,人口密度大,陡坡开垦现象突出[30],因此该流域对于西南山区来说具有一定的代表性。近年来研究区内大量种植脐橙等经果林,使得坡耕地逐渐向经果林转型,土地利用方式发生转变[29],景观格局也随之逐渐发生变化。
Fig. 1 Location and topography of the study area

图1 研究区位置及地形

1.2 数据来源

本文中2000年、2010年、2018年系列遥感影像数据来源于Google Earth(分辨率为0.51 m)高分辨影像。研究区域1:50000数字高程模型(DEM),则取自地理空间数据云平台。运用ArcGIS 10.2软件对遥感影像进行人机交互解译,得到研究区三期土地利用类型图。在景观类型划分时,参照“GDPJ01-2013”地理国情普查内容与指标并结合研究区实际情况,依据人机交互解译判读方法,将土地利用类型划分为坡耕地、有林地、灌木林地、草地、果园、水体、聚落、道路、建设用地(生态产业园和机场)、撂荒地、未利用地共11类。

1.3 景观格局转型的定义

景观转型是土地利用、土地覆盖和景观结构综合作用的结果。结合研究区土地利用类型在时序上的变化,可以得出土地利用形态转变是由传统农业社会的耕地扩张和林地收缩演变为现代农业社会中的耕地收缩、果园扩张和林地恢复性增长。山区农户生计分化,发生了耕地撂荒和土地边际化,土地生态功能转变导致景观格局发生明显变化 (图2)。因此,可将景观转型定义为土地利用和土地覆盖的长期根本性变化,例如从森林到城市,或者从农田到森林等,它是社会消费、环境保护与生产之间平衡变化和改变占用模式的结果[31]。在土地利用转型和森林转型的背景条件下,农民为满足自身经济需求,改变种植方向或坡耕地撂荒,使得农业生产方式和土地利用模式发生转变,景观格局也随之改变,即由生产型景观格局转型成生态经济型、生态调节型为主的景观格局。
Fig. 2 Mechanism of landscape pattern transformation

图2 景观格局转型发生机理

1.4 研究方法

1.4.1 样带选择的依据
综合考虑研究区内的地形特征、城镇化发展水平和社会经济环境等影响因素在时间序列上对流域内土地利用形态和景观格局产生的影响,以及草堂溪流域自然地理环境变化主要表现在沿河流流向的上、中、下游纵向梯度和垂直于河流流向的横向梯度两方面,即在河流两侧的河谷地带,其地势较平坦,从起始点到终点的上、中、下游的土地利用类型多样,景观呈现多样化;而随着距河流距离的增加,高程和坡度增加,从山麓到山顶的土地利用类型逐渐减少,景观呈现单一化。因此在设置样带时,将上述影响因素作为样带选取的依据。根据局地区域不同地形特征,有选择性地重点分析耕—果转换明显和建设用地、林地扩展较快的区域,尽可能地将不同样带延伸到整个研究区,最大限度地涵盖所划分的土地利用类型。而在样带选取过程中,考虑到遥感影像的精度问题和实际地形走势,再加上研究区的面积状况,当样带宽度较大时,一些重要的格局特征被掩盖,无法准确反映样带景观的格局特征;样带宽度较小则斑块数量太少,景观类型不全面,看不出景观类型的变化。因此,在综合考虑各方面因素之后,将样带宽度设置为200 m较为合适。本次研究最终设置了5条具有代表性的样带,其中样带a、e表示纵向梯度格局,位于河谷地区;样带b、c、d表示横向梯度格局,位于山地丘陵地区。样带a和c的长度分别为15 km和14.2 km,样带b、d和e的长度均为7 km。
1.4.2 样带梯度分析
样带梯度指沿着某个主导驱动因素,景观特征在地形梯度上有规律地逐渐变化的空间特征[32],揭示研究区内不同土地利用类型沿样带表现出的空间差异规律,反映流域景观格局空间分布差异[21,33]。在ArcGIS 10.2软件中画出不同走向和宽度为200 m的样带,建立200 m×200 m的正方形窗口,自南向北依次进行人工操作和移动,每次移动一个窗口,并将其转化为1 m×1 m的栅格数据。然后使用Fragstats 4.2软件,计算各个窗口的景观指标值,并从起始点进行距离标注,更好地量化分析距离上不同样带的景观格局随地形梯度的变化。
1.4.3 景观格局指数
景观指数高度浓缩了景观格局信息,反映其结构组成和空间配置某些方面的特征,定量表达了景观格局和生态过程之间的关联性[34]。本文借助Fragstats 4.2软件,选取并计算了景观类型水平指数中的斑块密度(PD)、最大斑块指数(LPI)、景观形状指数(LSI)、香农多样性指数(SHDI)等4个指标,分析草堂溪流域2000—2018年不同方向样带上的景观格局变化特征。各指标计算方法及生态学意义参见文献[34]

2 结果分析

2.1 不同样带上的景观整体变化分析

2.1.1 土地利用类型的面积变化
研究区2000—2018年各样带上土地利用类型的面积如图3所示,其土地利用类型面积变化显著,土地利用正在发生转型。各样带2000年的主要景观基质是耕地,其面积占比均在30%以上,灌木林地次之。随着城镇化的快速推进,耕地逐年递减,撂荒地面积增加,2010—2018年样带a、d、e的果园和灌木林地面积增加,逐渐占据主导地位,其他地类增长缓慢。样带b和样带c在2000—2018年有林地和灌木林地面积激增,耕地持续减少,果园取代耕地,面积逐年增加。各样带上其他地类的面积也在小幅度地增加或减少,其中建设用地因奉节县生态产业园和机场的规划,从2010年开始增长迅速。因此,可将研究区土地利用变化类型大致分为三类:(1)较稳定型:道路、水体、聚落、未利用地和草地面积变化幅度不大,主要位于低海拔地区;(2)逐年递减型:坡耕地面积减少向果园和林地转变;(3)波动增加型:果园、林地、建设用地、撂荒地面积增加。果园和建设用地的面积逐年递增,经果林主要从中部和西部河谷平坝地区向东北部和西北部海拔较高、坡耕地面积较大的地区转移,森林覆盖度提高。
Fig. 3 Area of land use type in each transect

图3 各样带上土地利用类型的面积

2.1.2 土地利用景观在地形剖面上的分布变化
图4图5可知,2000—2018年间草堂溪流域不同方向样带上的景观格局与土地利用变化显著。样带a、e主要分布在河谷平坝地区,样带b、c、d主要以河流为轴线,分布在河流两侧,地形跨度较大,分别位于该研究区的上、中、下游地区。样带a、e在2000年以耕地景观为主,经果林的面积较小,零散分布在西南河谷地区和样带e北部高程500 m以下地区。2010—2018年耕地景观逐渐被经果林取代,原有的果园面积扩大,并逐渐向500~1000 m转移,果园在河流两岸的低海拔区域占优势成为该研究区的一大特色[35];2000—2010年样带e西北部和样带a东北部坡度较缓,居民点分布较多,人口需求大,导致坡耕地面积较大;近年来,由于经济快速发展,在高海拔地区上的居民点下移,坡耕地退耕,并转化为果园和灌木林地。水体、聚落、道路和建设用地多分布在河谷低海拔区域,2011年开工建设的奉节县移民生态产业园正好位于该研究区渝宜高速公路出口附近,再加上样带c东南部机场的修建,致使建设用地面积增加明显,位于高程300 m和1700 m左右;高海拔上的耕地退耕还林或撂荒。
Fig. 4 Landscape maps of land use on extension axes of different transects

图4 不同样带上的土地利用景观图

Fig. 5 Topographic profiles of different transects

图5 各样带的地形剖面图

样带b、c和d在2000年的主要景观基质类型是耕地和灌木林地,随着城镇化进程的加快,2010—2018年在中、高海拔地区上的坡耕地面积迅速减少,并转化为果园和灌木林地,有林地扩张明显。果园主要分布在样带b北部坡度较缓的毛坪村和样带d距起始点5 km范围的河谷地区内以及样带c河流两岸;灌木林地和有林地主要分布在样带b的整个东部区域、样带c的东南部和西北部以及样带d的西北部中高海拔地区。
从景观整体特征来看,2000—2010年耕地和灌木林地是各样带扩展轴方向上的主要景观基质类型,面积占比较大,各样带上的土地利用类型丰富度增加。果园和建设用地面积增长迅速,逐渐向较高地形转移;耕地、草地和有林地面积有所下降,灌木林地面积呈增长趋势,景观比较破碎,表现为离散分布的特点。2010—2018年,有林地和灌木林地面积增长量最大,果园次之,果园从2000年的零散分布到现在的连片聚集;耕地和草地在不同方向扩展轴上持续减少,各样带上的景观分布比较集中,成团聚分布。这一变化不仅与研究区的山区地形有关,而且还与近年来的耕地利用转型密切相关,促使其他景观类型分布发生变化。

2.2 不同样带上景观格局地形梯度变化分析

2.2.1 河谷区样带景观格局地形梯度变化
河谷地区样带a、e的PDLPILSISHDI值在地形梯度上的变化见图6,样带a在距起始点8 km、高程500 m的范围内,由2000年的耕地景观逐渐向建设用地和果园转变,PD值较8~15 km处高,破碎化程度较高,景观形状复杂,景观类型多样;8~15 km主要是林地景观以及少量的坡耕地,在距起始点14~15 km的东北部较缓平坝区,从 2010年开始坡耕地逐渐转变成果园,果园面积逐年增加,并向高海拔地区转移。LPILSI值各年变化剧烈,各斑块间更加趋于平衡,景观形状的复杂性降低,但仍比较明显。样带a的景观多样性呈现波浪状,高峰值出现在西南部距起始点1~2 km和13~14 km处,西南部位于河口地区,地势低平,分布着道路、河流、居民点、果园、建设用地和耕地等,东北部是由于坡耕地向果园和灌木林地转化,因此导致多样性指数产生变化。样带e位于研究区支流上,海拔低,地势较平缓,PD值从2000—2018年变化不大,景观破碎程度较低。峰值主要是在样带e南段距起始点0~2 km和4~5 km处,土地利用类型主要集中分布在此处。样带e在距起始点3 km范围内,耕地转变为果园和建设用地,其SHDILSIPD值变化基本一致,景观类型多样,斑块破碎。距起始点3~5 km处,林地景观占优势,5~7 km处坡耕地逐渐向果园和灌木林地转变,LPI值达到最大,PDSHDILSI值正好相反,景观类型单一。各景观指数值由2000—2018年逐年降低,景观类型的斑块密度减少,景观破碎化程度总体呈现降低趋势,景观异质性降低,景观形状和类型由低海拔地区向高海拔地区逐渐趋于简单。
Fig. 6 Landscape index changes of transect a and transect e in valley area

图6 河谷地区样带a和样带e景观指数变化图

从整体上看,河谷地区景观格局指数变化除了受到地形的影响外,还与农户生计转型和政府政策扶持有关。随着工业化、城镇化进程加快,农民对土地生产功能需求降低,劳动力析出,耕地撂荒或者当地政府鼓励种植果园等经济林,使得河谷地区各景观指数值发生变化。由此说明现代的土地利用格局正在逐渐打破传统的以耕地为主导地位的景观格局,耕地利用发生转型,呈现出多种土地利用景观并存的格局。
2.2.2 山地丘陵区样带景观格局地形梯度变化
样带b、c、d的PDLPILSISHDI值在地形梯度上的变化见图7,随着与样带起始点距离的增加,样带b、c、d的各景观指数值总体呈多波谷状变化,并且随着时间变化,各样带上景观指数值逐年递减。样带b位于东北部,主要以林地景观为主,在距起始点1~2 km、3~4 km和5~6 km处零散地分布着坡耕地和果园,其PD值和SHDI值较其他点高,LPI值与之相反,景观优势度不明显。样带c地形跨度较大,距起始点1~6 km主要景观基质是林地景观;6~8 km处坡耕地转变为果园;8~15 km处以林地景观为主,坡耕地分布在11~13 km处,果园零散分布,其景观指数随地形整体波动较大。样带d距起始点4 km范围内,位于海拔较低的河谷地区,果园面积广布,耕地景观向果园转变,居民点增加,PD值较其他样带小,破碎化程度降低,果园景观占优势;4~7 km处以林地景观为主,坡耕地分布零散,因此PD值较小,景观优势度明显,景观多样性降低。
Fig. 7 Landscape index changes of b-d in mountainous and hilly regions

图7 山地丘陵地区样带b~d的景观指数变化图

三条样带上的PD值从2000年至今,逐渐减少,表明景观破碎度降低,景观同质化程度不断提高。并且三条样带都是以河流为轴线,河流两岸河谷地带多样性指数较高,而随着距河流距离的增大,多样性指数减少。样带b距起始点2~4 km处,样带c距起始点6~8 km处和样带d距起始点2~3 km处多样性指数最高,最高值均达到1.4,其主要分布着耕地、由耕地转变成的果园和河流等,并且SHDI值较高的地方,其LPI值较低,LSI值则较高。再加上高程和坡度较大的地区,人类活动下移,发生了耕地撂荒和土地边际化,三条样带两端的较高海拔地区主要分布着有林地和灌木林地,因此各样带两端的景观指数值较中间临近河流的地方相比,破碎度降低,优势类型明显,多样性指数下降。从总体上来看,样带c北段大部分区域内的景观指数整体波动幅度比南段剧烈得多,而样带b和d的整个景观序列比较连续。

3 讨论

3.1 土地利用转型引起的景观格局变化

土地转型的基本特征是土地利用变更和集约化[36],且农业、工业和人口城市化引起的快速土地利用转型对生态环境有巨大的影响[37]。大多数学者着重于研究土地利用变化[38],或者探讨土地利用变化对景观格局影响的一般性规律和时空变化特征[39],没有明确提出景观格局随着土地利用转型发生何种变化。本文在此基础上分析了几种景观类型在样带上的景观格局转变,得出研究区内景观格局正随着土地利用转型而发生转型。这种景观转型也表明生产力农业和土地弃耕可以在空间差异格局中共存[40]
草堂溪流域土地利用类型分布主要是沿着河谷地区向南北方向缓慢延伸,聚落、水体、道路和果园等主要集中在河谷平坝区;坡耕地、灌木林地和草地主要分布在中高海拔上;有林地和灌木林地大部分集中在高海拔地区,与已有研究结果大体一致[35]。而样带体现了近20年来三峡库区农村土地利用变化状况,反映出了山区农村土地利用转型以及由此引起的景观格局转型,并通过景观格局指数反映研究区景观的破碎度、优势度、景观形状指数和多样性,研究区景观格局总体上是以河流为轴线向外扩散的集团式分布特征。近年来,该地的斑块破碎化程度降低,景观多样性和形状复杂性随着高程和坡度也逐渐下降,不同高程上的优势类型明显,景观异质性减小。高海拔地区的森林景观面积激增,河谷地区和海拔较高的坡耕地退耕,形成经果林和森林景观,城镇和村庄景观也由高海拔地区转移到河谷或缓坡平坝区,分列于道路交通景观和水域景观两侧,水域景观面积扩张,极大地便利了人们的生活(图8)。
Fig. 8 Evolution of rural landscape patterns

图8 乡村景观格局演变

因此,可将研究区内的景观格局转型总结为以下几种模式:(1)在河谷地区城镇化水平较高、地形限制较少的样带a和样带e,其景观形状更为复杂,景观多样性增加,景观格局由原本的以耕地景观为主导的格局转变为多种景观并存的格局;(2)山地丘陵地区海拔较高的样带b、c和d,其景观破碎化程度较河谷地区小,景观多样性减少,景观格局由原本的多种景观并存转变为以林地景观为主导的格局;(3)耕地景观逐渐发展成为经果林和森林景观,景观转型的重点主要体现在坡耕地、经果林和林地景观。
研究区土地利用和景观格局发生的这一系列转型过程对库区未来的农业生态系统转型具有重要的作用,有助于缓解耕地压力、促进经济发展、维护生态平衡,使得库区生态治理更加有效,生态环境有所改善。正如最近的卫星数据(2000— 2017年)揭示了一种绿化模式,在世界范围内的农田中,中国和印度通过土地利用管理正在引领世界绿化[8]。研究区土地利用转型引领景观格局转型,呈生态功能主导型和生态—生产功能优势型的土地功能格局[41],是中国山区农村景观格局转型的典型案例。这也在一定程度上反映了中国耕地功能转型所取得的显著成效,中国正在变绿[42]

3.2 研究区景观格局梯度演变的驱动机制分析

区域土地利用形态随着区域所处社会和经济发展阶段变化而变化[43]。乡村景观动态变化过程中,产业调整和经济发展通过影响土地利用结构进而对农业景观产生影响[44],耕地撂荒正在改变世界范围内的农村景观[45]。土地利用变化与景观过程相互联系,受多种生物、物理和社会经济驱动因素的影响,形成一个复杂的、多尺度的系统[46]。研究区景观格局的分布变化是由山区社会—生态系统和外部环境等多重因素综合作用的结果[47],总体上主要受社会经济因素和自然因素驱动,主要体现在以下几个方面(图9):
Fig. 9 The driving mechanism of gradient evolution of landscape patterns in the study area

图9 研究区景观格局梯度演变的驱动机制

(1)自然因素的影响。地形等自然要素很大程度上决定了农业的生产方式,也因此影响着农村景观格局,形成多样的土地利用类型。
(2)政府扶持,生态退耕,经果林大量种植。当地政府对林果业发展的政策支持和引导以及人们对林果、苗木等产品需求量的日益增大,使得林果种植规模增长迅速。
(3)耕地撂荒,农户生计转型。耕地撂荒与农户非农就业有关,随着城镇化和工业化的发展,务农机会成本上升、农业劳动力析出,造成农业景观的退化和村庄的衰败,撂荒地向林草地演变。
(4)生态和经济双赢的土地利用模式。研究区大部分的农户已基本向非农生计转型,主要生计来源于青壮年劳动力外出务工,土地压力减小,农业生产方式也随之发生转变;经果林种植规模的扩大,给农户和企业带来了经济效益,同时也有利于减轻水土流失,在确保经济效益的同时提高生态效益,从而实现双赢目标。
(5)实施“乡村振兴”战略,道路通达性提高。党的十九大报告提出的“乡村振兴”战略,推动了草堂镇城镇化发展和交通基础设施建设,极大地满足了农民生活、农业生产和交通运输等方面的需求,改善和提高了乡镇道路通达性,促进山区农村建设,城镇和农村居民点也随之向交通线附近聚集分布、扩展延伸。

3.3 研究区进行土地利用与景观格局转型的现实意义

探讨库区乡村景观格局转型及其驱动因素,对于理清典型库区景观格局动态和土地利用转型路径具有一定积极作用,进而为山区农业未来发展方向提供科学依据[48]。研究区景观格局梯度变化反映了山区耕地利用转型,从传统的功能单一、粗放经营过渡到功能多样化、空间集约化的现代农业社会。研究区的耕地利用转型倾向于耕地向果园转变,粮食作物向经济作物转变,并且始终以生态效益为目标。在土地整治过程中,可采取粮食作物和经济作物兼种的方式,提高耕地质量,降低土壤侵蚀,增加农民收入,提高农民进行土地整治的积极性,以及改善生态环境状况,减轻水土流失。党的十九大报告也明确提出了“乡村振兴”战略,深入开展土地整治区域乡村人地系统的影响,在以往重视农业发展的基础上强调乡村生活的复兴与聚落发展、乡村生态的修复和规划,促进流域乡村转型与振兴[49,50]。因此,草堂溪流域也应在种植经果林的基础上,开展特色农业产业,打造现代农业基地,形成品牌产业链,促进乡村转型和农户生计转型,实现乡村振兴、农业发展、农民增收。同时,经果林的发展为研究区农业的转型提供了方向,提高了山区土地质量和利用效率,对于研究区现代化农业可持续发展和景观格局优化具有一定的指导意义。

4 结论

本文选取三峡库区典型流域,通过三期高清影像数据运用景观格局指数并结合样带梯度分析来分析草堂溪流域土地利用变化过程,探讨研究区景观格局在不同梯度带上的演变,揭示出山区乡村景观格局转型的一般性规律。
(1)2000—2018年,景观类型整体变化幅度较为明显。大致可分为三类:① 较稳定型:道路、水体、聚落、未利用地和草地面积变化幅度小;② 逐年递减型:坡耕地面积减少向果园和林地转变;③ 逐年增加型:果园、林地、建设用地、撂荒地面积增加。
(2)2000—2018年,受城镇化水平和地形等因素的影响,草堂溪流域不同方向样带上景观格局变化显著。景观转型的重点主要体现在坡耕地、经果林和林地,耕地景观逐渐发展成为经果林和森林景观。河谷地区的景观格局由原本的以耕地景观为主导的格局转变为多种景观并存的景观格局;分布于山地丘陵地区的景观格局由原本的多种景观并存转变为以林地景观为主导的格局,整体上由生产型景观格局转型成生态经济型、生态调节型为主的景观格局。
(3)社会经济发展和农业政策等导致研究区内土地利用发生转型,在土地利用转型背景下的乡村景观格局也发生了相应的转变,为以后类似山区土地资源的合理利用、生态治理和乡村振兴提供借鉴价值。
当然本文也存在一定的不足之处,样带分析只是选取比较典型的区域进行分析说明,对于其他区域可能存在的差异性变化讨论力度不大、不全面,再加上农户调查数据不充分,对研究区内景观转型的影响因素分析不够深入,可在后续的研究中做进一步探讨。但本文的研究结果仍客观地反映了研究区乡村景观格局转型的现状。
[1]
龙花楼. 土地利用转型: 土地利用/覆被变化综合研究的新途径. 地理与地理信息科学, 2003, 19(1): 87-90.

[LONG H L. Land use transformation: A new approach to comprehensive research on land use/cover change. Geography and Geographic-Information Science, 2003, 19(1): 87-90.]

[2]
LONG H L, HEILIG G K, LI X B, et al. Socio-economic development and land-use change: Analysis of rural housing land transition in the transect of the Yangtze River, China. Land Use Policy, 2007, 24(1): 141-153.Abstract

Rural housing land accounted for 67.3% of China's total construction land in 2000. While there are numerous studies analyzing the loss of arable land due to urban sprawl, less attention has been paid to the study of rural housing land in China. This paper develops a theoretical framework for rural housing land transition in China. It introduces a research method, which is using the spatial differentiation in regional development for compensating the deficiencies in time-series data, to analyze the rural housing land transition in the Transect of the Yangtse River (TYR). Detailed land-use data and socio-economic data from both research institutes and government departments were used to test the following hypothesis on rural housing land transition. We assume that rural housing in every region will undergo specific stages—the proportion of rural housing in the increase of total construction land will decline gradually with the development of the local economy, and the end of the transition corresponds to a new equilibrium between rural housing and other construction activities. Five regional types of rural housing land change were defined according to an aggregation index used to reflect landscape patterns. The outcomes indicated that the share of rural housing in the increase of total construction land declines gradually from the upper reaches to the lower reaches of the Yangtse River, i.e. from Ganzi–Yushu to Luzhou–Diqing, Enshi–Chongqing, Tongling–Yichang and to Shanghai–Chaohu. Each region is in a different phase of the rural housing land transition, which corresponds to a particular socio-economic developmental level. Finally, some policy implications were discussed by applying this research to land management issues. The authors argue that there are problems in the current rural housing land managerial system in China, and that the Central Government needs to define uniform regulations for rural housing according to regional socio-economic developmental level, physical conditions and rural housing land transition phase.

]]>

DOI

[3]
龙花楼, 胡智超, 邹健. 英国乡村发展政策演变及启示. 地理研究, 2010, 29(8): 1369-1378.

[LONG H L, HU Z C, ZOU J. The evolution of rural policy in Britain and its policy implications for rural development in China. Geographical Research, 2010, 29(8): 1369-1378.]

[4]
FOLEY J A, DEFRIES R, ASNER G P, et al. Global consequences of land use. Science, 2005, 309(5734): 570-574.Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.

DOI PMID

[5]
LAMBIN E F, MEYFROIDT P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy, 2010, 27(2): 108-118.Abstract

The concept of land use transition highlights that land use change is non-linear and is associated with other societal and biophysical system changes. A transition in land use is not a fixed pattern, nor is it deterministic. Land use transitions can be caused by negative socio-ecological feedbacks that arise from a depletion of key resources or from socio-economic change and innovation that take place rather independently from the ecological system. Here, we explore whether the sources of land use transitions are mostly endogenous socio-ecological forces or exogenous socio-economic factors. We first review a few generic pathways of forest transition as identified in national case studies, and evaluate the varying ecological quality of expanding forests associated with these pathways. We then discuss possible explanatory frameworks of land use transitions. We use the case of the recent forest transition in Vietnam as an illustration. Socio-ecological feedbacks seem to better explain a slowing down of deforestation and stabilization of forest cover, while exogenous socio-economic factors better account for reforestation. We conclude by discussing the prospects of accelerating land use transitions in tropical forest countries.

]]>

DOI

[6]
JIANG P H, CHENG Q W, ZHUANG Z Z, et al. The dynamic mechanism of landscape structure change of arable landscape system in China. Agriculture, Ecosystems and Environment, 2018, 251: 26-36.

DOI

[7]
张佰林, 高江波, 高阳, 等. 中国山区农村土地利用转型解析. 地理学报, 2018, 73(3): 503-517.

[ZHANG B L, GAO J B, GAO Y, et al. Land use transition of mountainous rural areas in China. Acta Geographica Sinica, 2018, 73(3): 503-517.]

[8]
CHEN C, PARK T, WANG X H. China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2: 122-129.Satellite data show increasing leaf area of vegetation due to direct (human land-use management) and indirect factors (climate change, CO2 fertilization, nitrogen deposition, recovery from natural disturbances, etc.). Among these, climate change and CO2 fertilization effect seem to be the dominant drivers. However, recent satellite data (2000-2017) reveal a greening pattern that is strikingly prominent in China and India, and overlapping with croplands world-wide. China alone accounts for 25% of the global net increase in leaf area with only 6.6% of global vegetated area. The greening in China is from forests (42%) and croplands (32%), but in India is mostly from croplands (82%) with minor contribution from forests (4.4%). China is engineering ambitious programs to conserve and expand forests with the goal of mitigating land degradation, air pollution and climate change. Food production in China and India has increased by over 35% since 2000 mostly due to increasing harvested area through multiple cropping facilitated by fertilizer use and surface/ground-water irrigation. Our results indicate that the direct factor is a key driver of the

DOI PMID

[9]
SUN Z C, LI X W, FU W X, et al. Long-term effects of land use/land cover change on surface runoff in urban areas of Beijing, China. Journal of Applied Remote Sensing, 2014, 8(1): 1354-1365.

[10]
刘纪远, 匡文慧, 张增祥, 等. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局. 地理学报, 2014, 69(1): 3-14.

[LIU J Y, KUANG W H, ZHANG Z X, et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geographica Sinica, 2014, 69(1): 3-14.]

[11]
VANWAMBEKE S O, SOMBOON P, LAMBIN E F. Rural transformation and land use change in Northern Thailand. Journal of Land Use Science, 2007, 2(1): 1-29.

DOI

[12]
WANG D, HIGGITTD, TANGY T, et al. Landscape change and the sustainable development strategy of different types of Ethnic Villages driven by the Grain for Green Program. Sustainability, 2018, 10: 3485-3503.

DOI

[13]
徐嘉兴, 李钢, 渠俊峰, 等. 洪泽湖地区土地利用与景观格局演变. 长江流域资源与环境, 2011, 20(10): 1211-1216.

[XU J X, LI G, QU J F, et al. Changes of land use and landscape pattern in Hongze Lake Basin. Resources and Environment in the Yangtze Basin, 2011, 20(10): 1211-1216.]

[14]
MCDONNELL M J, HAHS A K. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: Current status and future directions. Landscape Ecology, 2008, 23(10): 1143-1155.Over the past decade, the urban–rural gradient approach has been effectively used to study the ecology of cities and towns around the world. These studies have focused on understanding the distribution of plants and animals as well as ecosystem processes along gradients of urbanization that run from densely urbanized inner city to more rural exurban environments. We reviewed 300 papers investigating urbanization gradients that were published in peer-reviewed journals between 1990 and May 2007. Sixty-three percent of the papers investigated the distribution of organisms along urbanization gradients. Only five papers addressed the measures used to quantify the urbanization gradient itself. Within the papers addressing the distribution of organisms, 49% investigated the responses of birds to urbanization gradients, and <10% of the papers investigated more cryptic organisms. Most of these studies utilized a variety of broad measures of urbanization, but future advances in the field will require the development of some standardized broad measures to facilitate comparisons between cities. More specific measures of urbanization can be used to gain a mechanistic understanding of species and ecosystem responses to urbanization gradients. While the gradient approach has made a significant contribution to our understanding of the ecology of cities and towns, there is now a need to address our current knowledge gaps so that the field can reach its full potential. We present two examples of research questions that demonstrate how we can enhance our understanding of urbanization gradients, and the ecological knowledge that we can obtain from them.]]>

DOI

[15]
SUKOPP H. Urban ecology-scientific and practical aspects. Urban Ecology. Springer Berlin Heidelberg, 1998: 3-16.

[16]
MCDONNELL M J, PICKETT S T A. Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology, 1990, 71(4): 1232-1237.

DOI

[17]
张利权, 吴健平, 甄彧, 等. 基于GIS的上海市景观格局梯度分析. 植物生态学报, 2004, 28(1): 78-85.

[ZHANG L Q, WU J P, ZHEN Y, et al. A GIS-based gradient analysis of the urban landscape pattern of Shanghai Metropolitan Region. Acta Phytoecologica Sinica, 2004, 28(1): 78-85.]

[18]
崔王平, 李阳兵, 李潇然. 重庆市主城区景观格局演变的样带响应与驱动机制差异. 自然资源学报, 2017, 32(4): 553-567.

[CUI W P, LI Y B, LI X R. Gradient analysis and comparison of landscape pattern along different transects in the main urban area of Chongqing city. Journal of Natural Resources, 2017, 32(4): 553-567.]

[19]
黄宁, 吝涛, 章伟婕, 等. 厦门市同安区不同扩展轴上的景观格局梯度分析与比较. 地理科学进展, 2009, 28(5): 767-774.

[HUANG N, LIN T, ZHANG W J, et al. Gradient analysis and comparison of landscape patterns along different expansion axes of Tongan district in Xiamen city. Progress in Geography, 2009, 28(5): 767-774.]

[20]
谢余初, 巩杰, 王合领, 等. 绿洲城市不同道路扩展轴的景观梯度变化对比研究. 地理科学, 2013, 33(12): 1434-1441.

[XIE Y C, GONG J, WANG H L, et al. Gradient analysis and comparison of landscape pattern along different traffic expansion axes of oasis city in the arid area of China. Scientia Geographica Sinica, 2013, 33(12): 1434-1441.]

[21]
赵志轩, 张彪, 金鑫, 等. 海河流域景观空间梯度格局及其与环境因子的关系. 生态学报, 2011, 31(7): 1925-1935.

[ZHAO Z X, ZHANG B, JIN X, et al. Spatial gradients pattern of landscapes and their relations with environmental factors in Haihe River Basin. Acta Ecologica Sinica, 2011, 31(7): 1925-1935.]

[22]
张玲玲, 赵永华, 殷莎, 等. 基于移动窗口法的岷江干旱河谷景观格局梯度分析. 生态学报, 2014, 34(12): 3276-3284.

[ZHANG L L, ZHAO Y H, YIN S, et al. Gradient analysis of arid valley of Minjiang River landscape pattern based on moving window method. Acta Ecologica Sinica, 2014, 34(12): 3276-3284.]

[23]
任嘉衍, 刘慧敏, 丁圣彦, 等. 伊河流域景观格局变化及其驱动机制. 应用生态学报, 2017, 28(8): 2611-2620.

[REN J Y, LIU H M, DING S Y, et al. Landscape pattern change and its driving mechanism in Yihe River Basin, China. Chinese Journal of Applied Ecology, 2017, 28(8): 2611-2620.]

[24]
LUCK M, WU J G. A gradient analysis of urban landscape pattern: A case study from the Phoenix Metropolitan Region, Arizona, USA. Landscape Ecology, 2002, 17(4): 327-339.Urbanization is arguably the most dramatic form of land transformation that profoundly influences biological diversity and human life. Quantifying landscape pattern and its change is essential for the monitoring and assessment of ecological consequences of urbanization. Combining gradient analysis with landscape metrics, we attempted to quantify the spatial pattern of urbanization in the Phoenix metropolitan area, Arizona, USA. Several landscape metrics were computed along a 165 km long and 15 km wide transect with a moving window. The research was designed to address four research questions: How do different land use types change with distance away from the urban center? Do different land use types have their own unique spatial signatures? Can urbanization gradients be detected using landscape pattern analysis? How do the urban gradients differ among landscape metrics? The answers to these questions were generally affirmative and informative. The results showed that the spatial pattern of urbanization could be reliably quantified using landscape metrics with a gradient analysis approach, and the location of the urbanization center could be identified precisely and consistently with multiple indices. Different land use types exhibited distinctive, but not necessarily unique, spatial signatures that were dependent on specific landscape metrics. The changes in landscape pattern along the transect have important ecological implications, and quantifying the urbanization gradient, as illustrated in this paper, is an important first step to linking pattern with processes in urban ecological studies.]]>

DOI

[25]
WENG Y C. Spatiotemporal changes of landscape pattern in response to urbanization. Landscape and Urban Planning, 2007, 81(4): 341-353.Abstract

The combined method of urban gradient analysis and landscape metrics in analyzing the changes of landscape pattern has been widely applied since its introduction by Luck and Wu (2002). In order to address the temporal dynamics of landscape change, this study integrated transect analysis with temporal trend analysis and specifically discussed how changes of residential pattern are related to forms of urban growth. Using Dane County, Wisconsin, USA as an example, a 60 km transect passing through the City of Madison was set up to represent a continuum of rural-urban-rural landscapes. Changes of landscape pattern from 1968 to 2000 were analyzed by FRAGSTATS with four metrics—percentage of landscape (PLAND), Shannon's evenness index (SHEI), patch density (PD), and mean patch size (MPS). Findings from metric analyses revealed that the degree of land-use diversity and landscape fragmentation is positively related to the degree of urbanization.

Specifically, at the class-level, residential land-use type shows the strongest positive relationship to the degree of urbanization in all of the class-level metrics adopted. Changes in residential land-use pattern were further analyzed with the number of housing units. The analyses revealed that there are different patterns of residential development along the transect in the study area—with the core urban area expanding outward in a contiguous manner while the rural areas have scattered development. This study demonstrated the additional insights into landscape change by integrating the spatial and the temporal perspectives and by targeting the forms of residential developments.

]]>

DOI

[26]
李俊祥, 王玉洁, 沈晓虹, 等. 上海市城乡梯度景观格局分析. 生态学报, 2004, 24(9): 1973-1980, 2096.

[LI J X, WANG Y J, SHEN X H, et al. Landscape patternanalysis alongan urban-rural gradient in the Shanghai Metropolitan Region. Acta Ecologica Sinica, 2004, 24(9): 1973-1980, 2096.]

[27]
VIZZARI M, SIGURA M. Landscape sequences along the urban-rural-natural gradient: A novel geospatial approach for identification and analysis. Landscape and Urban Planning, 2015, 140: 42-55.

DOI

[28]
王永艳, 李阳兵, 邵景安, 等. 基于斑块评价的三峡库区腹地坡耕地优化调控方法与案例研究. 生态学报, 2014, 34(12): 3245-3256.

[WANG Y Y, LI Y B, SHAO J A, et al. Optimizing theory and case studies of cultivated slope land in the center of Three Gorges Reservoir area based on patch-scale land evaluation. Acta Ecologica Sinica, 2014, 34(12): 3245-3256.]

[29]
梁鑫源, 李阳兵. 三峡库区“耕—果”转换时空变化特征及其启示: 以草堂溪流域为例. 自然资源学报, 2019, 34(2): 385-399.

[LIANG X Y, LI Y B. Spatio-temporal variation of farmland-fruit forest conversion and its enlightenment in Three Gorges Reservoir Area: A case study on Caotangxi watershed. Journal of Natural Resources, 2019, 34(2): 385-399.]

[30]
赵岩洁, 李阳兵, 邵景安. 基于土地利用变化的三峡库区小流域生态风险评价: 以草堂溪为例. 自然资源学报, 2013, 28(6): 944-956.

[ZHAO Y J, LI Y B, SHAO J A. Ecological risk assessment of small watersheds of the Three Gorges Reservoir Area based on land use change: A case study of Caotang River. Journal of Natural Resources, 2013, 28(6): 944-956.]

[31]
THEO V D S, PEDROID B, FREDERIKSEN P, et al. The impact of European landscape transitionson the provision of landscape services: An explorative studyusing six cases of rural land change. Landscape Ecology, 2019, 34(2): 307-323.

DOI

[32]
刘彦随, 杨忍. 中国县域城镇化的空间特征与形成机理. 地理学报, 2012, 67(8): 1011-1020.

[LIU Y S, YANG R. The spatial characteristics and formation mechanism of the country urbanization in China. Acta Geographica Sinica, 2012, 67(8): 1011-1020.]

[33]
胡秋凤, 陈娟, 戴文远, 等. 快速城镇化下旅游海岛景观格局梯度分析: 以福建省平潭岛为例. 福建师范大学学报: 自然科学版, 2019, 35(2): 109-116.

[HU Q F, CHEN J, DAI W Y, et al. Gradient analysis landscape pattern of tourism island with rapid urbanization: A case study of Pingtan Island. Journal of Fujian Normal University: Natural Sciences, 2019, 35(2): 109-116.]

[34]
邬建国. 景观生态学: 格局、过程、尺度与等级. 北京: 高等教育出版社, 2007.

[WU J G. Landscape Ecology: Pattern, Process, Scale and Hierarchy. Beijing: Higher Education Press, 2007.]

[35]
李阳兵, 王永艳, 陈琴. 地形对三峡库区腹地小流域景观格局分异的影响: 以草堂溪流域为例. 重庆师范大学学报: 自然科学版, 2014, 31(5): 48-53, 2.

[LI Y B, WANG Y Y, CHEN Q. The effect of based on terrain factor landscape pattern in the center region of Three Gorges Reservoir Area: A case study of Caotangxi Watershed. Journal of Chongqing Normal University: Natural Sciences, 2014, 31(5): 48-53, 2.]

[36]
RICHTER H G. Land use and land transformation. GeoJournal, 1984, 8(1): 67-74.

DOI

[37]
ZHANG J, FU M, TAO J, et al. Response of ecological storage and conservation to land use transformation: A case study of a mining town in China. Ecological Modelling, 2010, 221(10): 1427-1439.

DOI

[38]
杨斌, 王占岐, 姚小薇, 等. 鄂西北山区土地利用的地形梯度效应与空间结构特征. 长江流域资源与环境, 2019, 28(2): 313-321.

[YANG B, WANG Z Q, YIAO X W, et al. Terrain gradient effect and spatial structure characteristics of land use in mountain areas of Northwestern Hubei province. Resources and Environment in the Yangtze Basin, 2019, 28(2): 313-321.]

[39]
潘竟虎, 苏有才, 黄永生, 等. 近30年玉门市土地利用与景观格局变化及其驱动力. 地理研究, 2012, 31(9): 1631-1639.

[PAN J H, SU Y C, HUANG Y S, et al. Land use and landscape pattern change and its driving force in Yumen city in the past 30 years. Geographical Research, 2012, 31(9): 1631-1639.]

[40]
ZOMENI M, TZANOPOULOS J, PANTIS J D, et al. Historical analysis of landscape change using remote sensing techniques: An explanatory tool for agricultural transformation in Greek rural areas. Landscape and Urban Planning, 2008, 86(1): 38-46.Abstract

The role of agricultural change in transforming Greek rural landscapes is analysed within the broader context and theory of agricultural transition from traditional to productivist and post-productivist regimes. The analysis is based on remote sensing data following a case study approach in two study sites – Tymfi and Konitsa – located in the Epirus mountain area. Vegetation maps were created for 1945, 1969 and 1995 via ‘object oriented image analysis’ of a series of air-photographs. A number of landscape metrics was then calculated for each map and the interpreted spatial analysis illustrates that the observed landscape changes are linked to agricultural restructure. During the post war period when agriculture in Western Europe had entered a productivist phase, agricultural change was marked by trends of agricultural abandonment predominantly evident in the upland areas. In contrast, farming persisted at the lowlands and the gradual aggregation of crop fields in few large patches, indicates the existence of productivist agriculture. This landscape transformation suggests that productivist agriculture and land abandonment can coexist in a spatially differentiated pattern. Although since the mid-1980s, the rationale of agricultural policy priorities shifted towards post-productivism, the findings of this study do not support the existence of such a transition. The results are further discussed within the broader context of agricultural change in Europe providing an additional dimension to the discussions regarding the spatio-temporal properties of agricultural transition. Understanding the process of agricultural change could enhance the role of agricultural policy as a tool for landscape management and regional planning.

]]>

DOI

[41]
应弘, 李阳兵. 三峡库区腹地草堂溪小流域土地功能格局变化. 长江流域资源与环境, 2017, 26(2): 227-237.

[YING H, LI Y B. Land use functions dynamics pattern of Caotang Watershed in the Three Gorges Reservoir Area. Resources and Environment in the Yangtze Basin, 2017, 26(2): 227-237.]

[42]
MARC M F. Satellite images show China going green. Nature, 2018, 553(7689): 411-413.

DOI PMID

[43]
龙花楼, 李秀彬. 区域土地利用转型分析: 以长江沿线样带为例. 自然资源学报, 2002, 17(2): 144-149.

[LONG H L, LI X B. Analysis on regional land use transition: A case study in transect of the Yangtze River. Journal of Natural Resources, 2002, 17(2): 144-149.]

[44]
YOU H Y. Agricultural landscape dynamics in response to economic transition: Comparisons between different spatial planning zones in Ningbo region, China. Land Use Policy, 2017, 61: 316-328.

DOI

[45]
QUEIROZ C, BEILIN R, FOLKE C, et al. Farmland abandonment: Threat or opportunity for biodiversity conservation? A global review. Ecology and the Environment, 2014, 12(5): 288-296.

[46]
CLAESSENS L, SCHOORL J M, VERBURG P H, et al. Modelling interactions and feedback mechanisms between land use change and landscape processes. Agriculture Ecosystems and Environment, 2009, 129(1): 157-170.

DOI

[47]
梁鑫源, 李阳兵, 邵景安, 等. 三峡库区山区传统农业生态系统转型. 地理学报, 2019, 74(8): 1605-1621.

[LIANG X Y, LI Y B, SHAO J A, et al. Traditional agroecosystem transition in mountainous area of Three Gorges Reservoir Area. Acta Geographica Sinica, 2019, 74(8): 1605-1621.]

[48]
梁鑫源, 李阳兵. 三峡库区规模农地时空变化特征及其驱动机制. 地理学报, 2018, 73(9): 563-580.

[LIANG X Y, LI Y B. Spatio-temporal features of scaling farmland and its corresponding driving mechanism in Three Gorges Reservoir Area. Acta Geographica Sinica, 2019, 29(4): 563-580.]

[49]
郭炎, 唐鑫磊, 陈昆仑, 等. 武汉市乡村聚落空间重构的特征与影响因素. 经济地理, 2018, 38(10): 180-189.

[GU Y, TANG X L, CHEN K L, et al. Characteristics and influencing factors of spatial restructuring of rural settlements in Wuhan city. Economic Geography, 2018, 38(10): 180-189.]

[50]
李裕瑞, 李怡, 范朋灿, 等. 黄土丘陵沟壑区沟道土地整治对乡村人地系统的影响. 农业工程学报, 2019, 35(5): 241-250.

[LI Y R, LI Y, FAN P C, et al. Impacts of land consolidation on rural human-environment system in typical watershed of Loess Hilly and Gully Region. Transactions of the CSAE, 2019, 35(5): 241-250.]

文章导航

/