博弈视角下跨界河流水资源保护协作机制——以太湖流域太浦河为例
作者简介:杨梦杰(1995- ),男,安徽阜阳人,硕士,主要从事流域水资源管理研究。E-mail: ymj0717@163.com
收稿日期: 2018-09-01
要求修回日期: 2019-03-01
网络出版日期: 2019-06-20
基金资助
水体污染控制与治理科技重大专项(2017ZX07207003-01)
The cooperation mechanism of water resources protection in trans-boundary river based on game theory: A case study of the Taipu River in the Taihu Lake Basin
Received date: 2018-09-01
Request revised date: 2019-03-01
Online published: 2019-06-20
Copyright
跨界河流水资源保护利益协调问题是流域水资源管理的难点。以太湖流域典型跨界河流太浦河为例,对比分析上下游水资源保护利益诉求,基于博弈理论,引入外部驱动(流域机构介入、激励约束政策)与内部均衡(生态补偿、断面水质考核)四种协调手段,探讨均衡太浦河上下游利益矛盾、激励上下游实现合作保护的协作机制。结果表明:(1)在引入协调手段的博弈模型中,实现了博弈系统向协作策略(达标,补偿)演化。(2)基于博弈分析结果,协作策略(达标,补偿)的实现与激励约束力度、补偿金额、水权、上游保护成本与效益等因素密切相关。(3)外部驱动机制有利于协调上下游河流功能定位需求差异,并调动上下游加强协作保护的积极性与主动性;内部均衡机制有利于弥补上游水权、产业发展等利益损失,并倒逼太浦河水质达标、保障下游取水安全。(4)构建的太浦河水资源保护协作机制,可为加快推进长三角一体化协同发展,建设流域“清水走廊”提供理论与决策支持参考。
杨梦杰 , 杨凯 , 李根 , 牛小丹 . 博弈视角下跨界河流水资源保护协作机制——以太湖流域太浦河为例[J]. 自然资源学报, 2019 , 34(6) : 1232 -1244 . DOI: 10.31497/zrzyxb.20190609
The coordination of interests among stakeholders in water resources management for trans-boundary rivers remains to be a challenge. Taking the Taipu River, a typical trans-boundary river in the Taihu Lake Basin, as an example, this paper analyzed the interest demands of stakeholders for water resources protection in the upstream and downstream regions of the Taipu River. Based on the game theory, this paper introduced both external driving forces (Watershed Agency Intervention and Incentive and Restraint Policies) and internal equilibrium measures (Ecological Compensation and Sectional Water Quality Assessment) to explore a cooperation mechanism that can mitigate the conflicts and encourage cooperation between the upstream and downstream regions. The results show that: (1) The game cooperative strategy (Reaching Standard, Compensation) is realized in the game model with the coordination methods. (2) Based on the results of game analysis, the realization of the game strategy (Reaching Standard, Compensation) is closely related to the strength of incentives and constraints, the amount of compensation, water rights, upstream protection costs and benefits. (3) The external driving forces can help to coordinate the function orientation difference of upstream and downstream demands of the Taipu River, and to create the enthusiasm and initiative of protection cooperation of the upstream and downstream regions. The internal equilibrium measures can compensate for the loss of upstream water rights and industrial development interests, making the water quality of the Taipu River to meet the safety standard of the downstream water intake. (4) The coordination mechanism of the water resources protection for the Taipu River was constructed, which provides theoretical and decision-making support to accelerate the coordinated development of the Yangtze River Delta and establish a Clean Water Corridor in the Taihu Lake Basin.
Fig. 1 The location of the Taipu River and typical regional characteristics of the upstream and downstream regions图1 太浦河上下游地区区位及区域典型特征 |
Fig. 2 The conflicts and interests of stakeholders on water resources protection in the upstream and downstream regions of the Taipu River图2 太浦河上下游地区水资源保护利益冲突及诉求分析 |
Table 1 The parameters and meanings of the game model表1 博弈模型相关参数设定及含义 |
相关参数 | 含义 |
---|---|
A1 | 上游地区采取“达标”策略时使得水生态环境改善而带来的环境综合效益 |
A2 | 上游地区采取“不达标”策略时的收益,作为上游初始收益 |
C | 上游地区采取“达标”策略时直接投入的成本以及丧失的可发展机会成本 |
D | 上游地区采取“达标”策略时,通过加大太浦闸下泄流量所损失的水权 |
B1 | 上游地区采取“达标”策略时下游地区所得的环境综合效益,即因水质达标而得的效益 |
B2 | 上游地区采取“不达标”策略时下游地区的收益,作为下游初始收益 |
P | 下游地区给予上游地区的生态补偿量 |
E | 上下游地区仅单方面采取合作策略(即“达标”或“补偿”)时,则流域机构对其的奖励 |
F | 上下游地区仅单方面采取不合作策略(即“不达标”或“不补偿”)时,则流域机构对其的惩罚 |
G | 上下游地区均采取不合作策略(即“不达标”和“不补偿”)时受到来自流域机构的惩罚;均采取合作措施(即“达标”和“补偿”策略)时受到来自流域机构的奖励 |
注:所有参数取值均大于0。 |
Table 2 The game matrix of water resources protection among the upstream and downstream regions in the Taipu River表2 太浦河水资源保护中上下游地区博弈收益矩阵 |
上游地区 | 下游地区 | |
---|---|---|
补偿 | 不补偿 | |
达标 | , | |
不达标 |
Table 3 The stability of the partial equilibrium points of the dynamic evolution game theory表3 动态演化博弈局部均衡点稳定性 |
均衡点 | det.J | tr.J |
---|---|---|
O (0, 0) | (A1+E+G-C-D)(E+G-P) | (A1+E+G-C-D)+(E+G-P) |
A (1, 0) | -(A1+E+G-C-D)(F+G-P) | -(A1+E+G-C-D)+(F+G-P) |
B (1, 1) | (A1+F+G-C-D)(F+G-P) | -(A1+F+G-C-D)-(F+G-P) |
C (0, 1) | -(A1+F+G-C-D)(E+G-P) | (A1+F+G-C-D)-(E+G-P) |
D (x*, y*) | -(C+D-A1-E-G)(A1+F+G-C-D)(P-E-G)(F+G-P)/(F-E)2 | 0 |
Table 4 The stability of the partial equilibrium points of the dynamic evolution game theory表4 4种情形下各局部均衡点的局部稳定性分析 |
均衡点 | 情形I (A1+E+G-C-D>0, E+G-P>0) | 情形II (A1+E+G-C-D>0, E+G-P<0) | 情形III (A1+E+G-C-D<0, E+G-P>0) | 情形IV (A1+E+G-C-D<0, E+G-P<0) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
det.J | tr.J | 稳定性 | det.J | tr.J | 稳定性 | det.J | tr.J | 稳定性 | det.J | tr.J | 稳定性 | ||||
O (0, 0) | + | + | 不稳定 | – | ± | 不稳定 | – | ± | 不稳定 | + | – | 稳定 | |||
A (1, 0) | – | ± | 不稳定 | – | ± | 不稳定 | + | + | 不稳定 | + | + | 不稳定 | |||
B (1, 1) | + | – | 稳定 | + | – | 稳定 | + | – | 稳定 | + | – | 稳定 | |||
C (0, 1) | – | ± | 不稳定 | + | + | 不稳定 | – | ± | 不稳定 | + | + | 不稳定 | |||
D (x*, y*) | – | 0 | 鞍点 | + | 0 | 鞍点 | + | 0 | 鞍点 | – | 0 | 鞍点 |
注:“+”“–”分别表示det.J与tr.J的正负性。 |
Fig. 3 The framework of cooperative protection mechanism between the upstream and downstream regions in the Taipu River Basin based on the game theory图3 博弈视角下太浦河上下游水资源保护协作机制框架 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
[
|
[6] |
[
|
[7] |
[
|
[8] |
|
[9] |
|
[10] |
|
[11] |
[
|
[12] |
|
[13] |
|
[14] |
|
[15] |
[
|
[16] |
[
|
[17] |
[
|
[18] |
[
|
[19] |
[
|
[20] |
[
|
[21] |
[
|
[22] |
[
|
[23] |
[
|
[24] |
[
|
[25] |
[
|
[26] |
[
|
[27] |
[
|
[28] |
|
[29] |
[
|
/
〈 |
|
〉 |