资源评价

GCM预测情景下中国21世纪干旱演变趋势分析

展开
  • 1.中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室,北京 100101;
    2. 中国科学院大学资环学院/中丹学院,北京 100049
莫兴国(1966- ),研究员,主要从事气候变化与生态水文过程研究。E-mail: moxg@igsnrr.ac.cn

收稿日期: 2017-07-03

  修回日期: 2017-11-07

  网络出版日期: 2018-07-20

基金资助

国家自然科学基金会项目(41471026);科技部973项目(2017YFA0603702);中国科学院地理科学与资源研究所特色所项目(TSYJS02)

Drought Trends over the Terrestrial China in the 21st Century in Climate Change Scenarios with Ensemble GCM Projections

Expand
  • 1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. College of Resources and Environment/Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 10049, China

Received date: 2017-07-03

  Revised date: 2017-11-07

  Online published: 2018-07-20

Supported by

National Natural Science Foundation of China, No. 41471026;Chinese Ministry of Science and Technology Projects, No. 2017YFA0603702;Project of IGSNRR, CAS, No. TSYJS02

摘要

未来气候变化情景下,我国干旱事件发生的趋势具有诸多不确定性。基于国际耦合模式比较计划第五阶段(CMIP5)中6个GCM模式的未来气候变化情景数据,采用帕尔默干旱指数(Palmer Drought Severity Index,PDSI),评估了21世纪RCP (Representative Concentration Pathway) 4.5和RCP 8.5情景下我国干旱事件发生的时空变化特征。结果表明:21世纪中后期,由于气候显著变暖而降水变化不稳定,我国将面临广泛的干旱化趋势,其中干旱频次、持续时间和强度都呈显著上升趋势。相对于基准期,干旱事件的空间格局也将发生变化,其中北方地区干旱事件历时和频次明显增加,而南方严重干旱事件的强度加剧。尽管未来气候变化情景下降水小幅增加,但仍不能扭转因增温所导致的区域干旱化趋势。因此,在制订和实施应对气候变化的旱灾预防、减缓及适应性方案和措施时,需要考虑气温和降水变化时空不匹配等因素的影响,从水热两方面调控干旱的不利影响。

本文引用格式

莫兴国, 胡实, 卢洪健, 林忠辉, 刘苏峡 . GCM预测情景下中国21世纪干旱演变趋势分析[J]. 自然资源学报, 2018 , 33(7) : 1244 -1256 . DOI: 10.31497/zrzyxb.20170666

Abstract

There are great uncertainties in drought predication because of climate change. Based on climate change scenarios projected by six GCMs in CMIP5 project, the spatio-temporal patterns of drought indices (Palmer Drought Severity Index, PDSI) over the terrestrial China in the 21st century in IPCC RCP 4.5 and RCP 8.5 scenarios are evaluated. Due to climate warming and precipitation variability, the drying trends are predicted to be prevailing in the 21st century over the country. It is shown that frequency, duration and intensity of drought will all be aggravated significantly, especially in the RCP 8.5 scenario. Compared to the baseline, the drought frequency will increase 1.5 and 3 times in 2050s and 2090s, respectively in RCP 4.5. In RCP 4.5, the drought duration will extend 0.3 and 1.1 month longer, and drought intensity will aggravate 9.1% and 26.9% in 2050s and 2090s, respectively. Long duration droughts will be more frequent in northern China, and the drought intensity will be aggravated in the Northeast China. By separating the effects of precipitation and temperature on PDSI, it is recognized that air warming results in the increase of drought frequency in southern part, while precipitation increases drought frequency slightly. In northern China, even though the precipitation increases significantly, the effect of air warming still overtakes the effect of precipitation, giving rise to more serious drought condition. In the light of drying trends in climate change scenarios, precautious measures and policies for mitigation and avoidance of drought disasters should be highlighted.

Key words: climate change; CMIP5; drought; PDSI

参考文献

[1] 黄荣辉, 杜振彩. 全球变暖背景下中国旱涝气候灾害的演变特征及趋势[J]. 自然杂志, 2010, 32(4): 187-195.
[HUANG R H, DU Z C.Evolution characteristics and trend of droughts and floods in China under the background of global warming. Chinese Journal of Nature, 2010, 32(4): 187-195. ]
[2] 李茂松, 李森, 李育慧. 中国近50年旱灾灾情分析[J]. 中国农业气象, 2003, 24(1): 7-10.
[LI M S, LI S, LI Y H.Studies on drought in the past 50 years in China. Chinese Journal of Agrometeorology, 2003, 24(1): 7-10. ]
[3] SHEFFIELD J, WOOD E F.Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations[J]. Climate Dynamics, 2008, 31: 79-105.
[4] DAI A.Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3: 52-58.
[5] 裴源生, 蒋桂芹, 翟家齐. 干旱演变驱动机制理论框架及其关键问题[J]. 水科学进展, 2013, 24(3): 449-456.
[PEI Y S, JIANG G Q, ZHAI J Q.Theoretical framework of drought evolution driving mechanism and the key problems. Advances in Water Science, 2013, 24(3): 449-456. ]
[6] SIVAKUMAR M V K, WILHITE D A, SVOBODA M D, et al. Drought risk and meteorological droughts[C]// Global Assessment Report on Disaster Risk Reduction, GAR 2011. 2010.
[7] IPCC. Managing the Risk of Extreme Events and Disasters to Advance Climate Change Adaptation [M]. A special report to Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge, UK, and New York, NY, USA: Cambridge University Press, 2012.
[8] 黄晚华, 隋月, 杨晓光, 等. 气候变化背景下中国南方地区季节性干旱特征与适应 Ⅲ: 基于降水量距平百分率的南方地区季节性干旱时空特征[J]. 应用生态学报, 2013, 24(2): 397-406.
[HUANG W H, SUI Y, YANG X G, et al.Characteristics and adaptation of seasonal drought in southern China under the background of climate change Ⅲ. Spatiotemporal characteristics of seasonal drought in southern China based on the percentage of precipitation anomalies. Chinese Journal of Applied Ecology, 2013, 24(2): 397-406. ]
[9] DOUVILLE H A, DECHARME B, RIBES B, et al.Anthropogenic influence on multi decadal changes in reconstructed global evapotranspiration[J]. Nature Climate Change, 2013, 3(1). doi: 10.1038/nclimate1632.
[10] MIRALLES D, VAN DEN BERG M, GASH J H, et al. El Niño-La Niña cycle and recent trends in continental evaporation[J]. Nature Climate Change, 2013, 4(1). doi: 10.1038/nclimate2068.
[11] MO X G, LIU S X, LIN Z H, et al.Trends in land surface evapotranspiration across China with remotely sensed NDVI and climatological data in 1981-2010 [J6]. Hydrological Sciences Journal, 2015, 60(11/12): 2163-2177.
[12] COOK B I, SMERDON J E, SEAGER R, et al.Global warming and 21st century drying[J]. Climate Dynamics, 2014, 43: 2607-2627.
[13] 卫捷, 陶诗言, 张庆云. Palmer干旱指数在华北干旱分析中的应用[J]. 地理学报, 2003, 58(S1): 91-99.
[WEI J, TAO S Y, ZHANG Q Y.Analysis of drought in northern China based on the Palmer severity drought index. Acta Geographica Sinica, 2003, 58(S1): 91-99. ]
[14] 邹旭恺, 任国玉, 张强. 基于综合气象干旱指数的中国干旱变化趋势研究[J]. 气候与环境研究, 2010, 15(4): 371-378.
[ZHOU X K, REN G Y, ZHANG Q.Droughts variations in China based on a compound index of meteorological drought. Climatic and Environmental Research, 2010, 15(4): 371-378. ]
[15] ZHOU L, WU J J, MO X Y, et al.Quantitative and detailed spatiotemporal patterns of drought in China during 2001-2013[J]. Science of the Total Environment, 2017, 589: 136-145.
[16] 马柱国. 华北干旱化趋势及转折性变化与太平洋年代际振荡的关系[J]. 科学通报, 2007, 52(10): 1199-1206.
[MA Z G.Spatial and temporal changes of drought and its relationship with Pacific Decadal Oscillation in the North China. Chinese Science Bulletin, 2007, 52(10): 1199-1206. ]
[17] LIU Z Y, MENZEL L, DONG C Y, et al.Temporal dynamics and spatial patterns of drought and relation to ENSO: A case study in Northwest China[J]. International Journal of Climatology, 2017, 36(8): 2886-2898.
[18] 谭方颖, 王建林, 宋迎波. 华北平原气候变暖对气象灾害发生趋势的影响[J]. 自然灾害学报, 2010, 19(5): 125-131.
[TAN F Y, WANG J L, SONG Y B.Impacts of climate warming on trend of meteorological disasters in the North China Plain. Journal of Natural Disasters, 2010, 19(5): 125-131. ]
[19] 章大全, 张璐, 杨杰, 等. 近50年中国降水及温度变化在干旱形成中的影响[J]. 物理学报, 2010, 59(1): 655-663.
[ZHANG D Q, ZHANG L, YANG J, et al.The impact of temperature and precipitation variation on drought in China in last 50 years. Acta Physica Sinica, 2010, 59(1): 655-663. ]
[20] ZHANG Z X, JIN Q, CHEN X, et al.On the linkage between the extreme drought and pluvial patterns in China and the large-scale atmospheric circulation[J]. Advances in Meteorology, 2016, 2016, doi: 10.1155/2016/8010638.
[21] 黄会平. 1949—2007年全国干旱灾害特征、成因及减灾对策[J]. 干旱区资源与环境, 2010, 24(11): 94-98.
[HUANG H P.Characteristics and causes of drought in China from 1949 to 2007. Journal of Arid Land Resources and Environment, 2010, 24(11): 94-98. ]
[22] 卢洪健, 莫兴国, 胡实. 华北平原1960—2009年气象干旱的时空变化特征[J]. 自然灾害学报, 2012, 12(6): 72-82.
[LU H J, MO X G, HU S.Spatiotemporal variation characteristics of meteorological droughts in North China Plain during 1960-2009. Journal of Natural Disasters, 2012, 12(6): 72-82. ]
[23] 卢洪健, 莫兴国, 孟德娟, 等. 气候变化背景下东北地区气象干旱的时空演变特征[J]. 地理科学, 2015, 35(8): 1051-1059.
[LU H J, MO X G, MENG D J, et al.Analyzing spatiotemporal patterns of meteorological drought and its responses to climate change across Northeast China. Scientia Geographica Sinica, 2015, 35(8): 1051-1059. ]
[24] 刘珂, 姜大膀. 中国夏季和冬季极端干旱年代际变化及成因分析[J]. 大气科学, 2014, 38(2): 309-321.
[LIU K, JIANG D B.Inter-decadal change and cause analysis of extreme summer and winter droughts over China. Chinese Journal of Atmospheric Sciences, 2014, 38(2): 309-321. ]
[25] 刘珂, 姜大膀. RCP 4.5情景下中国未来干湿变化预估[J]. 大气科学, 2015, 39(3): 489-502.
[LIU K, JIANG D B.Projected changes in the dry/wet climate of China under the RCP 4.5 scenario. Chinese Journal of Atmospheric Sciences, 2015, 39(3): 489-502. ]
[26] TRENBERTH K E, DAI A, VAN DER SCHRIER G, et al. Global warming and changes in drought[J]. Nature Climate Change, 2014, 4: 17-22. doi: 10.1038/nclimate2067.
[27] WUEBBLES D, MEEHL D, HAYHOE K, et al.CMIP5 climate model analyses climate extremes in the United States[J]. Bulletin of American Meteorology Society, 2014, 95: 571-583.
[28] TOUMA D, ASHFAQ M, NAYAK M A, et al.A multi-model and multi-index evaluation of drought characteristics in the 21st century[J]. Journal of Hydrology, 2015, 526: 196-207.
[29] VENKATARAMAN K, TUMMURI S, MEDINA A, et al.21st century drought outlook for major climate divisions of Texas based on CMIP 5 multimodel ensemble: Implications for water resource management[J]. Journal of Hydrology, 2016, 534: 300-316.
[30] PALMER W C.Meteorological drought [R]. U. S. Weather Bureau Research Paper 45, 1965.
[31] WANG L, CHEN W.A CMIP5 multi-model projection of future temperatures, precipitation, and climatological drought in China[J]. International Journal of Climatology, 2014, 34: 2059-2078.
[32] 秦正坤, 林朝晖, 陈红, 等. 基于EOF/SVD的短期气候模拟误差订正方法及其应用[J]. 气象学报, 2011, 69(2): 289-296.
[QIN Z K, LIN Z H, CHEN H, et al.The bias correction methods based on the EOF/SVD for short-term climate prediction and their applications. Acta Meteorologica Sinica, 2011, 69(2): 289-296. ]
[33] HUANG J P, YU H P, GUAN X D, et al.Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6: 166-172. doi: 10.1038/NCLIMATE2837.
[34] 许崇海, 罗勇, 徐影. IPCC AR4多模式对中国地区干旱变化的模拟及预估[J]. 冰川冻土, 2010, 32(5): 867-874.
[XU C H, LUO Y, XU Y.Simulation and prediction of the drought variations in China by multi-model ensemble. Journal of Glaciology and Geocryology, 2010, 32(5): 867-874. ]
[35] BROWN J F, WARDLOW B D, TADESSE T, et al.The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation[J]. GIScience & Remote Sensing, 2008, 45(1): 16-46.
文章导航

/