资源评价

中国省域隐含碳排放及其驱动机理时空演变分析

展开
  • 河南大学环境与规划学院,河南 开封 475004
崔盼盼(1990- ),女,河南焦作人,硕士研究生,主要从事城镇化与可持续发展研究。E-mail: cuipan3353@163.com

收稿日期: 2017-05-16

  修回日期: 2017-09-29

  网络出版日期: 2018-05-20

基金资助

国家自然科学基金项目(41501588,41671536); 中国博士后基金项目(2016M600575); 河南省哲学社会科学规划项目(2014CJJ065); 河南省高等学校重点科研项目(17A170006)

Analysis on the Spatial and Temporal Evolution of Indirect Carbon Emissions and Its Driving Mechanism in China

Expand
  • College of Environment and Planning, Henan University, Kaifeng 475004, China

Received date: 2017-05-16

  Revised date: 2017-09-29

  Online published: 2018-05-20

Supported by

National Science Foundation of China, No. 41501588 and 41671536; China Postdoctoral Science Foundation, No. 2016M600575; Henan Provincial Philosophy and Social Science Foundation, No. 2014CJJ065; Key Scientific Research Project of Henan Higher Education, No. 17A170006.

摘要

隐含碳排放研究是探索绿色低碳生活方式与推进生态文明建设的重要基础之一。论文基于投入产出分析法与城镇居民消费数据核算2002—2012年中国大陆30个省(除港澳台、西藏外)的城镇居民隐含碳排放,在分析城镇居民隐含碳排放时空演变特征的基础上,运用LMDI-Ⅰ加法数量分解模型分析城镇居民消费隐含碳排放的驱动机制及空间分异特征。研究结果表明:除吉林省外,其余各省的隐含碳排放呈增加趋势;消费水平提高是隐含碳排放量增加的主要因素,其高值主要聚集在北部沿海地区;人口规模对隐含碳排放变化具有双向效应,其强正向作用区与人口分界线所划分的东半壁逐渐趋于一致;导致多数省份隐含碳排放量下降的决定因素是隐含碳排放强度效应,空间差异不大;居民生活方式的变化对隐含碳排放变动的贡献不大,但其空间演变特征较为复杂。总之,各省隐含碳排放特征及其驱动机制存在差异,未来减排侧重点应有所不同。

本文引用格式

崔盼盼, 张艳平, 张丽君, 孙莹莹, 郑智成, 王伟, 徐晓霞 . 中国省域隐含碳排放及其驱动机理时空演变分析[J]. 自然资源学报, 2018 , 33(5) : 879 -892 . DOI: 10.11849/zrzyxb.20170474

Abstract

The study of indirect carbon emissions is one of the important foundations for exploring the low-carbon lifestyle and promoting the development of ecological civilization. This paper counted the indirect carbon emissions of the urban residents of 30 provinces (except Hong Kong, Macao, Taiwan and Tibet) based on the input-output analysis and the consumption data of urban residents from 2002 to 2012. Based on the analysis of temporal and spatial evolution characteristics of indirect carbon emissions of urban residents, the paper used the LMDI-I addition form, which belongs to the LMDI method, to quantitatively analyze the driving mechanisms of indirect carbon emissions and its spatial and temporal evolution. The research results showed that the indirect carbon emissions in all provinces showed increasing trends except in Jilin Province. The spatial pattern changes went through the initial phase, the initial differentiation phase, and the rapid evolution phase, and the spatial differentiation degree first declined and then rose. The consumption level is a main factor for indirect carbon emissions’ increasing, and the high value areas mainly gathered in the northern coastal area. The size of the population has a two-way effect on the indirect carbon emissions, and the area of higher positive effect gradually becomes the eastern region which is the same as the area divided by the Hu Huanyong Population Line. The most important factor that caused the reduction of carbon emissions in most provinces is the indirect carbon emission intensity effect with little spatial difference. The changes of residents’ lifestyle contributed little to the indirect carbon emissions, but its spatial evolution characteristics are complicated. According to the differences of four driving mechanisms, the provinces can be divided into vital emission reduction zones, key emission reduction zones and emission reduction concern area. In general, there are differences in the indirect carbon emission characteristics and the driving mechanisms among provinces, and the focus in the future for indirect emission reduction should be different.

参考文献

[1] 秦耀辰, 荣培君, 杨群涛, 等. 城市化对碳排放影响研究进展[J]. 地理科学进展, 2014, 33(11): 1526-1534.
[QIN Y C, RONG P J, YANG Q T, et al.Research progress of impact of urbanization on carbon emissions. Progress in Geography, 2014, 33(11): 1526-1534. ]
[2] 薛德升, 曾献君. 中国人口城镇化质量评价及省际差异分析[J]. 地理学报, 2016, 71(2): 194-204.
[XUE D S, ZENG X J.Evaluation of China’s urbanization quality and analysis of its spatial pattern transformation based on the modern life index. Acta Geographica Sinica, 2016, 71(2): 194-204. ]
[3] FAN J, GUO X M, MARINOVA D, et al.Embedded carbon footprint of Chinese urban households: Structure and changes[J]. Journal of Cleaner Production, 2012, 33(8): 50-59.
[4] VRINGER K, BLOK K.The direct and indirect energy requirements of households in the Netherlands[J]. Energy Policy, 1995, 37(10): 893-910.
[5] BIN S, DOWLATABADI H.Consumer lifestyle approach to US energy use and the related CO2 emissions[J]. Energy Policy, 2005, 33(2): 197-208.
[6] MARKAKI M, BELEGRI-ROBOLI A, SARAFIDIS Υ, et al.The carbon footprint of Greek households (1995-2012)[J]. Energy Policy, 2017, 100: 206-215.
[7] ALA-MANTILA S, HEINONEN J, JUNNILA S.Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis[J]. Ecological Economics, 2014, 104(3): 129-139.
[8] MIEHE R, SCHEUMANN R, JONES C M, et al.Regional carbon footprints of households: A German case study[J]. Environment, Development and Sustainability, 2016, 18(2): 577-591.
[9] HEINONEN J, JUNNILA S.Implications of urban structure on carbon consumption in metropolitan areas[J]. Environmental Research Letters, 2011, 6(1): 014018. doi: 10.1088/1748-9326/6/1/014018.
[10] 刘晶茹, PETERS G P, 王如松, 等. 综合生命周期分析在可持续消费研究中的应用[J]. 生态学报, 2007, 27(12): 5331-5336.
[LIU J R, PETERS G P, WANG R S, et al.Hybrid life-cycle analysis and its applications in sustainable consumption researches. Acta Ecologica Sinica, 2007, 27(12): 5331-5336. ]
[11] 杨选梅, 葛幼松, 曾红鹰. 基于个体消费行为的家庭碳排放研究[J]. 中国人口·资源与环境, 2010, 20(5): 35-40.
[YANG X M, GE Y S, ZENG H Y.The household carbon emission analysis under individual consumer behavior. China Population, Resources and Environment, 2010, 20(5): 35-40. ]
[12] FENG Z H, ZOU L L, WEI Y M.The impact of household consumption on energy use and CO2 emissions in China[J]. Energy, 2010, 36(1): 656-670.
[13] ZHU Q, PENG X Z, WU K Y.Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input-output model[J]. Energy Policy, 2012, 48(3): 618-626.
[14] 刘晔, 刘丹, 张林秀. 中国省域城镇居民碳排放驱动因素分析[J]. 地理科学, 2016, 36(5): 691-696.
[LIU Y, LIU D, ZHANG L X.Driving factors analysis of carbon emissions in Chinese provincial urban households. Scientia Geographica Sinica, 2016, 36(5): 691-696. ]
[15] ALAM S, FATIMA A, BUTT M S.Sustainable development in Pakistan in the context of energy consumption demand and environmental degradation[J]. Journal of Asian Economics, 2007, 18(5): 825-837.
[16] 程叶青, 王哲野, 张守志, 等. 中国能源消费碳排放强度及其影响因素的空间计量[J]. 地理学报, 2013, 68(10): 1418-1431.
[CHENG Y Q, WANG Z Y, ZHANG S Z, et al.Spatial econometric analysis of carbon emission intensity and its driving factors from energy consumption in China. Acta Geographica Sinica, 2013, 68(10): 1418-1431. ]
[17] 刘莉娜, 曲建升, 黄雨生, 等. 中国居民生活碳排放的区域差异及影响因素分析[J]. 自然资源学报, 2016, 31(8): 1364-1377.
[LIU L N, QU J S, HUANG Y S, et al.Analyze on the spatial-temporal pattern and influence factors of Chinas per capita household carbon emissions. Journal of Natural Resources, 2016, 31(8): 1364-1377. ]
[18] 李建豹, 黄贤金, 吴常艳, 等. 中国省域碳排放影响因素的空间异质性分析[J]. 经济地理, 2015, 35(11): 21-28.
[LI J B, HUANG X J, WU C Y, et al.Analysis of spatial heterogeneity impact factors on carbon emissions in China. Economic Geography, 2015, 35(11): 21-28. ]
[19] 黄蕊, 王铮, 丁冠群, 等. 基于STIRPAT模型的江苏省能源消费碳排放影响因素分析及趋势预测[J]. 地理研究, 2016, 35(4): 781-789.
[HUANG R, WANG Z, DING G Q, et al.Trend prediction and analysis of influencing factors of carbon emissions from energy consumption in Jiangsu Province based on STIRPAT model. Geographical Research, 2016, 35(4): 781-789. ]
[20] 刘莉娜, 曲建升, 曾静静, 等. 灰色关联分析在中国农村家庭碳排放影响因素分析中的应用[J]. 生态环境学报, 2013, 22(3): 498-505.
[LIU L N, QU J S, ZENG J J, et al.Application of gray relational analysis method in the influencing factor analysis of China’s rural household carbon emissions. Ecology & Environmental Sciences, 2013, 22(3): 498-505. ]
[21] 吴开亚, 王文秀, 张浩, 等. 上海市居民消费的间接碳排放及影响因素分析[J]. 华东经济管理, 2013, 27(1): 1-7.
[WU K Y, WANG W X, ZHANG H, et al.Indirect carbon emissions of Shanghai’s residents consumption and its influence factors. East China Economic Management, 2013, 27(1): 1-7. ]
[22] 黄芳, 江可申. 我国居民生活消费碳排放的动态特征及影响因素分析[J]. 系统工程, 2013, 63(1): 52-60.
[HUANG F, JIANG K S.An analysis of the dynamic characteristics and the influential factors of carbon emissions from residential consumptions in China. Systems Engineering, 2013, 63(1): 52-60. ]
[23] ZHA D L, ZHOU D Q, ZHOU P.Driving forces of residential CO2, emissions in urban and rural China: An index decomposition analysis[J]. Energy Policy, 2010, 38(7): 3377-3383.
[24] ANG B W.Decomposition analysis for policy making in energy: Which is the preferred method?[J]. Energy Policy, 2004, 32(9): 1131-1139.
[25] TIMILSINA G R, SHRESTHA A.Factors affecting transport sector CO2 emissions growth in Latin American and Caribbean countries: An LMDI decomposition analysis[J]. International Journal of Energy Research, 2009, 33(4): 396-414.
[26] JEONG K, KIM S.LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector[J]. Energy Policy, 2013, 62(9): 1245-1253.
[27] LIU L C, FAN Y, WU G, et al.Using LMDI method to analyze the change of China’s industrial CO2, emissions from final fuel use: An empirical analysis[J]. Energy Policy, 2007, 35(11): 5892-5900.
[28] ZHAO M, TAN L R, ZHANG W G, et al.Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method[J]. Energy, 2010, 35(6): 2505-2510.
[29] 王长建, 汪菲, 张虹鸥. 新疆能源消费碳排放过程及其影响因素——基于扩展的Kaya恒等式[J]. 生态学报, 2016, 36(8): 2151-2163.
[WANG C J, WANG F, ZHANG H O.The process of energy-related carbon emissions and influencing mechanism research in Xinjiang. Acta Ecologica Sinica, 2016, 36(8): 2151-2163. ]
[30] 张旺, 周跃云. 北京能源消费排放CO2增量的分解研究——基于IDA法的LMDI技术分析[J]. 地理科学进展, 2013, 32(4): 514-521.
[ZHANG W, ZHOU Y Y.An empirical analysis of the increment of CO2 emission from energy consumption in Beijing: Based on LMDI technique of IDA method. Progress in Geography, 2013, 32(4): 514-521. ]
[31] 朱勤, 魏涛远. 居民消费视角下人口城镇化对碳排放的影响[J]. 中国人口·资源与环境, 2013, 23(11): 21-29.
[ZHU Q, WEI T Y.Impacts of urbanization on carbon emissions from perspective of residential consumption. China Population, Resources and Environment, 2013, 23(11): 21-29. ]
[32] 曲建升, 刘莉娜, 曾静静, 等. 中国城乡居民生活碳排放驱动因素分析[J]. 中国人口·资源与环境, 2014, 24(8): 33-41.
[QU J S, LIU L N, ZENG J J, et al.An analysis on driving factors of China’s urban and rural household carbon emissions. China Population, Resources and Environment, 2014, 24(8): 33-41. ]
[33] 陶玉国, 黄震方, 吴丽敏, 等. 江苏省区域旅游业碳排放测度及其因素分解[J]. 地理学报, 2014, 69(10): 1438-1448.
[TAO Y G, HUANG Z F, WU L M, et al.Measuring carbon dioxide emissions for regional tourism and its factor decomposition: A case study of Jiangsu Province. Acta Geographica Sinica, 2014, 69(10): 1438-1448. ]
[34] TAN Z F, LI L, WANG J J, et al.Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method[J]. Applied Energy, 2011, 88(12): 4496-4504.
[35] 王锋, 冯根福, 吴丽华. 中国经济增长中碳强度下降的省区贡献分解[J]. 经济研究, 2013(8): 143-155.
[WANG F, FENG G F, WU L H.Regional contribution to the decline of national carbon intensity in China’s economic growth. Economic Research, 2013(8): 143-155. ]
[36] 董会娟, 耿涌. 基于投入产出分析的北京市居民消费碳足迹研究[J]. 资源科学, 2012, 34(3): 494-501.
[DONG H J, GENG Y.Study on carbon footprint of the household consumption in Beijing based on input-output analysis. Resources Science, 2012, 34(3): 494-501. ]
[37] 张金萍, 秦耀辰, 张艳, 等. 城市CO2排放结构与低碳水平测度——以京津沪渝为例[J]. 地理科学, 2010, 30(6): 874-879.
[ZHANG J P, QIN Y C, ZHANG Y, et al.Measurement of urban CO2 emission structure and low-carbon standard—A case study for Beijing, Tianjin, Shanghai and Chongqing cites. Scientia Geographica Sinica, 2010, 30(6): 874-879. ]
[38] ANG B W.LMDI decomposition approach: A guide for implementation[J]. Energy Policy, 2015, 86: 233-238.
文章导航

/