资源研究方法

基于自助法与云模型的区域旱灾风险评估及区划研究

展开
  • 1.合肥工业大学 a. 土木与水利工程学院, b. 水资源与环境系统工程研究所,合肥 230009;
    2.蚌埠学院机械与车辆工程学院,安徽 蚌埠 233030;
    3.安徽省水利部淮河水利委员会水利科学研究院,水利水资源安徽省重点实验室,安徽 蚌埠 233000
吴成国(1982- ),男,甘肃民乐人,讲师,研究方向为水资源系统工程。E-mail: wule9825@163.com

收稿日期: 2017-04-27

  修回日期: 2017-11-07

  网络出版日期: 2018-04-10

基金资助

国家重点研发计划项目(2017YFC1502405);国家自然科学基金项目(51579059,51579060,51709071);山东省重点研发计划项目(2017GSF20101);安徽省高校自然科学研究项目(113052015KJ04)

Risk Assessment and Division Model for Regional Drought Disaster Based on Cloud Model and Bootstrap Method

Expand
  • 1.a. School of Civil and Hydraulic Engineering, b. Institute of Water Resources and Environmental Systems Engineering, Hefei University of Technology, Hefei 230009, China;
    2. School of Mechanical and Vehicle Engineering, Bengbu College, Bengbu 233030, China;
    3. Water Resources Research Institute of Anhui Province and Huaihe River Commission, MWR, Bengbu 230088, China

Received date: 2017-04-27

  Revised date: 2017-11-07

  Online published: 2018-04-10

Supported by

National Key Research and Development Program of China, No. 2017YFC1502405;National Natural Science Foundation of China, No. 51579059, 51579060 and 51709071;Key Research and Development Program of Shandong Province, No. 2017GSF20101;Natural Science Research Project of Universities in Anhui Province, No. 113052015KJ04.

摘要

区域旱灾风险评估与区划是科学揭示旱灾风险系统要素相互作用与演变机制的基础性工作,可为制定区域旱灾风险防控措施、实现旱灾风险管理提供合理有效的决策依据。为系统描述区域旱灾风险系统包含的随机性、模糊性及未确知性等复杂不确定性信息,论文基于随机抽样Bootstrap方法在合理构建区域旱灾风险系统样本方案集的基础上,将传统的确定性旱灾等级标准进行云化处理,采用正向正态云算法对区域因旱受灾风险系统Bootstrap样本集进行风险估计,并借助ArcGIS自然间断点分级法对区域旱灾风险分布状况进行区划研究,最终建立了基于自助法与云模型的区域旱灾风险评估及区划模型。该模型在安徽省的应用结果表明:1)云模型方法能较好地描述旱灾风险系统的不确定性,计算所得的旱灾风险率区间估计结果能进一步反映风险内涵;2)淮北平原(阜阳市、宿州市、亳州市、滁州市)、江淮丘陵地区(六安市)及皖东南山区(黄山市、池州市)未来发生旱灾风险事件的总体概率较大,是安徽省旱灾风险管理的重点区域。可见,采用云模型方法进行旱灾风险评估能进一步降低旱灾风险系统不确定性对评估结果的误差影响,对区域旱灾风险评估及区划的理论与实践研究具有参考应用价值。

本文引用格式

吴成国, 白露, 白夏, 金菊良, 蒋尚明 . 基于自助法与云模型的区域旱灾风险评估及区划研究[J]. 自然资源学报, 2018 , 33(4) : 684 -695 . DOI: 10.11849/zrzyxb.20170392

Abstract

Regional drought disaster risk assessment and division is a basic work for scientifically revealing the element mutual interaction and evolution mechanism of drought disaster risk system and can provide reasonable decision-making basis for developing drought disaster risk prevention and control measures and realizing drought disaster risk management. In order to effectively describe the uncertainties, including randomness, fuzziness and unascertained characteristics of regional drought disaster risk system, firstly, the Bootstrap sample set of regional drought disaster risk system was established using the random sampling method. Then, after fuzzily processing the traditional drought disaster grade standard using the Cloud Theory, the forward and normal cloud algorithm was proposed for interval estimation analysis of the Bootstrap sample set. Besides, the natural breaks classification method in ArcGIS was used to analyze the regional drought disaster risk distribution. Finally, the risk assessment and division model for regional drought disaster based on Cloud Model and Bootstrap Method (CMBM) was proposed in this paper. The results of applying the model in Anhui Province indicate that: 1) The Cloud Model theory can describe the uncertainties of drought disaster system better, and the interval assessing results of drought disaster risk can further reveal the nature of risk. 2) The overall risk probability of drought disaster in Huaibei Plain (Fuyan, Suzhou, Bozhou and Chuzhou), Jianghuai Hilly Region (Lu’an) and southeast area of Anhui Province (Huangshan, Chizhou) is relatively high in the future, so more attention should be paid in these areas to prevent drought disaster. This study proposed a scientific and effective drought disaster risk assessment and division model based on Cloud Model and Bootstrap Method, and the model can further decrease the influence of the uncertainties of drought disaster risk system on assessment results. The paper has a great theoretical significance in guiding regional drought disaster risk assessment and division.

参考文献

[1] 金菊良, 宋占智, 崔毅, 等. 旱灾风险评估与调控关键技术研究进展[J]. 水利学报, 2016, 47(3): 398-412.
[JIN J L, SONG Z Z, CUI Y, et al.Research progress on the key technologies of drought risk assessment and control. Journal of Hydraulic Engineering, 2016, 47(3): 398-412. ]
[2] WANDERS N, WADA Y.Human and climate impacts on the 21st century hydrological drought[J]. Journal of Hydrology, 2015, 526: 208-220.
[3] HAO Z C, HONG Y, XIA Y L, et al.Probabilistic drought characterization in the categorical form using ordinal regression[J]. Journal of Hydrology, 2016, 535: 331-339.
[4] 屈艳萍, 郦建强, 吕娟, 等. 旱灾风险定量评估总体框架及其关键技术[J]. 水科学进展, 2014, 25(2): 297-304.
[QU Y P, LI J Q, LÜ J, et al.A quantitative framework for assessing drought risk and key technique. Advance in Water Science, 2014, 25(2): 297-304. ]
[5] 金菊良, 郦建强, 周玉良, 等. 旱灾风险评估的初步理论框架[J]. 灾害学, 2014, 29(3): 1-10.
[JIN J L, LI J Q, ZHOU Y L, et al.Research on the theoretical framework of drought risk assessment. Journal of Catastrophology, 2014, 29(3): 1-10. ]
[6] 程亮, 金菊良, 郦建强, 等. 干旱频率分析研究进展[J]. 水科学进展, 2013, 24(3): 296-302.
[CHENG L, JIN J L, LI J Q, et al.Advance in the study of drought frequency analysis. Advance in Water Science, 2013, 24(3): 296-302. ]
[7] 顾颖. 风险管理是干旱管理的发展趋势[J]. 水科学进展, 2006, 17(2): 295-298.
[GU Y.Risk management: The trend of the drought management. Advance in Water Science, 2006, 17(2): 295-298. ]
[8] 屈艳萍, 高辉, 吕娟, 等. 基于区域灾害系统论的中国农业旱灾风险评估[J]. 水利学报, 2015, 46(8): 908-917.
[QU Y P, GAO H, LÜ J, et al.Agricultural drought disaster risk assessment in China based on the regional disaster system theory. Journal of Hydraulic Engineering, 2015, 46(8): 908-917. ]
[9] HUANG S Z, CHANG J X, LENG G Y, et al.Integrated index for drought assessment based on variable fuzzy set theory: A case study in the Yellow River Basin, China[J]. Journal of Hydrology, 2015, 527: 608-618.
[10] TOUM D, ASHFAQ M, NAYAK M A, et al.A multi-model and multi-index evaluation of drought characteristics in the 21st century[J]. Journal of Hydrology, 2015, 526: 196-207.
[11] 赵天保, 陈亮, 马柱国. CMIP5多模式对全球典型干旱半干旱区气候变化的模拟与预估[J]. 科学通报, 2014, 59(12): 1148-1163.
[ZHAO T B, CHEN L, MA Z G.Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 Models. Chinese Science Bulletin, 2014, 59(12): 1148-1163. ]
[12] 孙才志, 张翔. 基于信息扩散技术的辽宁省农业旱灾风险评价[J]. 农业系统科学与综合研究, 2008, 24(4): 507-510.
[SUN C Z, ZHANG X.Risk Assessment of agriculture drought in Liaoning Province based on information diffusion technique. System Sciences and Comprehensive Studies in Agriculture, 2008, 24(4): 507-510. ]
[13] 许凯, 徐翔宇, 李爱花, 等. 基于概率统计方法的承德市农业旱灾风险评估[J]. 农业工程学报, 2013, 29(14): 139-146.
[XU K, XU X Y, LI A H, et al.Assessing agricultural drought disaster risk in Chengde City using stochastic method. Transactions of the CSAE, 2013, 29(14): 139-146. ]
[14] 欧阳蔚, 于艳青, 金菊良, 等. 基于信息扩散与自助法的旱灾风险评估模型——以安徽为例[J]. 灾害学, 2015, 30(1): 228-234.
[OUYANG W, YU Y Q, JIN J L, et a1. Risk assessment model of drought disaster based on information diffusion and bootstrap: A case study in Anhui. Journal of Catastrophology, 2015, 30(1): 228-234. ]
[15] 闫超君, 欧阳蔚, 金菊良, 等. 基于信息扩散和频率曲线适线的农业旱灾风险评估方法[J]. 水利水电技术, 2014, 45(7): 107-111, 116.
[YAN C J, OUYANG W, JIN J L, et al.Risk Assessment method of agricultural drought disaster based on information diffusion and frequency curve fitting. Water Resources and Hydropower Engineering, 2014, 45(7): 107-111, 116. ]
[16] 孙可可, 陈进, 许继军, 等. 基于EPIC模型的云南元谋水稻春季旱灾风险评估方法[J]. 水利学报, 2013, 44(11): 1326-1332, 1325.
[SUN K K, CHEN J, XU J J, et al.Study on the assessment method of spring drought risk for rice in Yuanmou County, Yunnan Province based on the EPIC Model. Journal of Hydraulic Engineering, 2013, 44(11): 1326-1332, 1325. ]
[17] 贾慧聪, 王静爱, 潘东华, 等. 基于EPIC模型的黄淮海夏玉米旱灾风险评价[J]. 地理学报, 2011, 66(5): 643-652.
[JIA H C, WANG J A, PAN D H, et al.Maize drought disaster risk assessment based on EPIC Model: A case study of maize region in northern China. Acta Geographica Sinica, 2011, 66(5): 643-652. ]
[18] 李德毅, 杜鹢. 不确定性人工智能 [M]. 第二版. 北京: 国防工业出版社, 2014.
[LI D Y, DU Y.Artificial Intelligence with Uncertainty. The Second Edition. Beijing: National Defend Industry Press, 2014. ]
[19] 付斌, 李道国, 王慕快. 云模型研究的回顾与展望[J]. 计算机应用研究, 2011, 28(2): 420-426.
[FU B, LI D G, WANG M K.Review and prospect on research of Cloud Model. Application Research of Computers, 2011, 28(2): 420-426. ]
[20] 王贺, 刘高峰, 王慧敏. 基于云模型的城市极端雨洪灾害风险评价[J]. 水利经济, 2014, 32(2): 15-19, 56.
[WANG H, LIU G F, WANG H M.Urban extreme rainstorm flood loss based on Cloud Model. Journal of Economics of Water Resources, 2014, 32(2): 15-19, 56. ]
[21] 谢益辉, 朱钰. Bootstrap方法的历史发展与前沿研究[J]. 统计与信息论坛, 2008, 23(2): 90-96.
[XIE Y H, ZHU Y.Bootstrap methods: Developments and frontiers. Statistics and Information Forum, 2008, 23(2): 90-96. ]
[22] 程亮. 计算统计学方法在洪水资源利用的风险管理中的应用研究 [D]. 合肥: 合肥工业大学, 2010.
[CHENG L.Computational Statistics Methods and Their Application to Risk Management in Reservoir Flood Utilization. Hefei: Hefei University of Technology, 2010. ]
[23] 安徽省水利厅. 安徽水旱灾害 [M]. 北京: 中国水利水电出版社, 1998.
[Water Resources Department of Anhui Province. Flood and Drought Disaster in Anhui Province. Beijing: China Water and Power Press, 1998. ]
[24] 中华人民共和国国家标准. 干旱灾害等级标准 [S]. 北京: 中国水利水电出版社, 2014.
[Standard of the People’s Republic of China. Standard of Classification for Drought Disaster. Beijing: China Water and Power Press, 2014. ]
[25] 张秋文, 章永志, 钟鸣. 基于云模型的水库诱发地震风险多级模糊综合评价[J]. 水利学报, 2014, 45(1): 87-95.
[ZHANG Q W, ZHANG Y Z, ZHONG M.A Cloud Model based approach for multi-hierarchy fuzzy comprehensive evaluation of reservoir-induced seismic risk. Journal of Hydraulic Engineering, 2014, 45(1): 87-95. ]
[ZHANG Q W, ZHANG Y Z, ZHONG M.A Cloud Model based approach for multi-hierarchy fuzzy comprehensive evaluation of reservoir-induced seismic risk. Journal of Hydraulic Engineering, 2014, 45(1): 87-95. ]
文章导航

/