资源生态

秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应

展开
  • 1. 西北大学城市与环境学院,西安 710127;
    2. 陕西继续教育大学, 西安 710004;
    3. 西安市气象局,西安 710016
邓晨晖(1984- ),女,陕西蒲城人,博士,主要从事秦岭植被与气候变化研究。E-mail: chenhuisnow@126.com

收稿日期: 2017-02-23

  修回日期: 2017-07-29

  网络出版日期: 2018-03-20

基金资助

陕西省科学研究发展计划面上项目(2016JM4022); 国家林业公益性行业科研专项(201304309)

Spatial-temporal Variation of the Vegetation Coverage in Qinling Mountains and Its Dual Response to Climate Change and Human Activities

Expand
  • 1. College of Urban and Environmental Science, Northwest University, Xi’an 710127, China;
    2. Shaanxi Continuous Education College, Xi’an 710004, China;
    3. Xi’an Meteorological Bureau, Xi’an 710016, China;

Received date: 2017-02-23

  Revised date: 2017-07-29

  Online published: 2018-03-20

Supported by

A General Program from the Shaanxi Province Scientific Research and Development Plan, No. 2016JM4022; National Forestry Public Welfare Industry Scientific Research Project, No. 201304309.

摘要

论文基于MODIS-NDVI数据、DEM及气象数据,辅以趋势分析、多元回归残差法、偏最小二乘回归法,反演了秦岭地区2000—2015年植被覆盖度及分析了其“格局—过程—趋势”的变化特征,探究了其对气候变化与人类活动的双重响应机制。结果表明:1)秦岭地区近16 a来植被覆盖度呈显著上升趋势,增速为2.77%/10 a,呈“中间高、周边低,西部高、东部低,南坡高、北坡低”的空间格局,植被覆盖度随海拔的升高在2 200 m左右达到最大,700~3 200 m达0.7以上,1 300~2 700 m达0.9以上,3 400 m以上为0.5以下的低值区;2)秦岭地区的植被覆盖与气候因子的响应关系存在明显的空间差异,对气温的响应总体上没有明显的时滞效应,而与降水的响应存在以滞后1个月为主的时滞效应;3)人类活动对秦岭地区植被变化的作用日趋增强,且以正向作用为主,主要分布在东部地区,而负向作用则分布于中部和西部地区;4)秦岭地区植被变化是气候变化和人类活动共同作用的结果,影响因子对植被覆盖变化的解释能力依次为人类活动>降水>气温>潜在蒸散量。

本文引用格式

邓晨晖, 白红英, 高山, 刘荣娟, 马新萍, 黄晓月, 孟清 . 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应[J]. 自然资源学报, 2018 , 33(3) : 425 -438 . DOI: 10.11849/zrzyxb.20170139

Abstract

The Qinling Mountains, a key ecological zone of terrestrial ecosystem, has experienced a significant change of vegetation coverage in recent years. Based on MODIS-NDVI data, DEM data and meteorological data such as temperature, precipitation, sunshine, humidity and wind speed, this paper calculated the Fractional Vegetation Coverage (FVC) in Qinling Mountains, analyzed the background characteristics of the “pattern-process-trend” change, and explored the dual response mechanism of the vegetation coverage to climate change and human activities with trend analysis method, multiple regression method-residual method and PLS regression method. The results of the study showed that: First, the FVC in Qinling Mountains showed a significant increase trend at a growth rate of 2.77%/10 a during 2000-2015, with a very significant upward trend in the southern slope at a growth rate of 3.8%/10 a and a non-significant downward trend in the northern slope. In the space, FVC showed the pattern that is “high in the middle, low in the surroundings; high in the west, low in the east; high in the south-slope, low in the north-slope”. Second, the level of FVC in Qinling Mountains varied greatly, and the order of each FVC grade in area was Ⅴ, Ⅳ, Ⅲ, Ⅱ and Ⅰ, the area of Ⅰ and Ⅴ showing significant upward trend while the area of others showing decline trend. Third, the change of FVC at different altitudes was significantly different. There was a significant upward trend under 1 500 m and obvious downward trend at 2 600 m, while there was no obvious change at 1 500-2 600 m. With the increase of altitude, the FVC reached a maximum at 2 200 m. The FVC at 700-3 200 m was more than 0.7 and at 1 300-2 700 m was more than 0.9, and values below 0.5 mainly appeared in high altitude area above 3 400 m. Forth, there were significant spatial differences in the response of vegetation coverage to climatic factors. The response of vegetation coverage to precipitation had time lag, with a lag of one month, while the response to temperature did not have time lag. Fifth, the role of human activities was increasing rapidly, with the growth rate of 2.10%/10 a. The positive effect of human activities on FVC mainly distributed in the eastern region, and the negative effect of human activities mainly distributed in the central and western regions. Finally, the FVC changes were the results of both climate change and human activities, and the impact factors from strong to weak are human activity, precipitation, temperature and potential evapotranspiration.

参考文献

[1] PARMESAN C, YOHE G.A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature, 2003, 421(6918): 37-42.
[2] GUTMAN G, IGNATOV A.The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. International Journal of Remote Sensing, 1998, 19(8): 1533-1543.
[3] ZENG X,DICKINSON R E,WALKER A, et al.Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling[J]. Journal of Applied Meteorology, 2000, 39(6): 826-839.
[4] GITELSON A A, KAUFMAN Y J, STARK R, et al.Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 2002, 80(1): 76-87.
[5] 王智, 常顺利, 师庆东, 等. 基于FVC指数的中国西北干旱区植被覆盖变化Markov过程[J]. 应用生态学报, 2010, 21(5): 1129-1136.
[WANG Z, CHANG S L, SHI Q D, et al.Markov process of vegetation change in arid areas of Northwest China based on FVC index. Chinese Journal of Applied Ecology, 2010, 21(5): 1129-1136. ]
[6] 甘春英, 王兮之, 李保生, 等. 连江流域近18年来植被覆盖度变化分析[J]. 地理科学, 2011, 31(8): 1019-1024.
[GAN C Y, WANG X Z, LI B S, et al.Changes of vegetation coverage during recent 18 years in Lianjiang River watershed. Scientia Geographica Sinica, 2011, 31(8): 1019-1024. ]
[7] IPCC. Summary for Policymakers of Climate Change 2007: The Physical Science Basis [M]. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2007.
[8] ZHAO X, TAN K, ZHAO S Q, et al.Changing climate affects vegetation growth in the arid region of the northwestern China[J]. Journal of Arid Environments, 2011, 75(10): 946-952.
[9] NEMANI R R, KEELING C D, HASHIMOTO H, et al.Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300: 1560-1563.
[10] MA Z H, PENG C, ZHU Q A, et al.Regional drought-reduced reduction in the biomass carbon sink of Canada’s boreal forests[J]. Proceedings of the National Academy of Sciences of the Unites States of America, 2012, 109(7): 2423-2427.
[11] PIAO S L, FANG J Y, JI W, et al.Variation in a satellite-based vegetation index in relation to climate in China[J]. Journal of Vegetation Science, 2004, 15(2): 219-226.
[12] 张戈丽, 徐兴良, 周才平, 等. 近30 年来呼伦贝尔地区草地植被变化对气候变化的响应[J]. 地理学报, 2011, 66(1): 47-58.
[ZHANG G L, XU X L, ZHOU C P, et al.Responses of vegetation changes to climatic variations in Hulun Buir grassland in past 30 years. Acta Geographica Sinica, 2011, 66(1): 47-58. ]
[13] 陈怀亮, 徐祥德, 杜子璇, 等. 黄淮海地区植被活动对气候变化的响应特征[J]. 应用气象学报, 2009, 20(5): 513-520.
[CHEN H L, XU X D, DU Z X, et al.Vegetation activity responses to climate change in the Huang-Huai-Hai area based on GIMMS NDVI dataset. Journal of Applied Meteorological Science, 2009, 20(5): 513-520. ]
[14] 白红英. 秦巴山区森林植被对环境变化的响应 [M]. 北京: 科学出版社, 2014.
[BAI H Y.The Response of Vegetation to Environmental Change in Qinba Mountains. Beijing: Science Press, 2014. ]
[15] 刘宪锋, 潘耀忠, 朱秀芳, 等. 2000—2014年秦巴山区植被覆盖时空变化特征及其归因[J]. 地理学报, 2015, 70(5):705-716.
[LIU X F, PAN Y Z, ZHU X F, et al.Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors. Acta Geographica Sinica, 2015, 70(5): 705-716. ]
[16] 马新萍, 白红英, 贺映娜, 等. 基于NDVI的秦岭山地植被遥感物候及其与气温的响应关系——以陕西境内为例[J]. 地理科学, 2015, 35(12): 1616-1621.
[MA X Q, BAI H Y, HE Y N, et al.The vegetation remote sensing phenology of Qinling mountains based on NDVI and its response to temperature: Taking within the territory of Shaanxi as an example. Scientia Geographica Sinica, 2015, 35(12): 1616-1621. ]
[17] 秦大河, STOCKER T, 等. 第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究进展, 2014, 10(1): 1-6.
[QIN D H, STOCKER T, et al.Highlights of the IPCC working group I fifth assessment report. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(1): 1-6. ]
[18] 王强, 张勃, 戴声佩, 等. 三北防护林工程区植被覆盖变化与影响因子分析[J]. 中国环境科学, 2012, 32(7): 1302-1308.
[WANG Q, ZHANG B, DAI S P, et al.Analysis of the vegetation cover change and its relationship with factors in the Three-North Shelter Forest Program. China Environmental Science, 2012, 32(7): 1302-1308. ]
[19] PIAO S L, FANG J Y, ZHOU L M, et al.Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999[J]. Journal of Geophysical Research, 2003, 108(D14), 4401. doi: 10.1029/2002JD002848.
[20] WU X, LIU H, REN J, et al.Water-dominated vegetation activity across biomes in mid-latitudinal eastern China[J]. Geophysical Research Letters, 2009, 36(4): 69-79.
[21] 徐浩杰, 杨太保. 柴达木盆地植被生长时空变化特征及其对气候要素的响应[J]. 自然资源学报, 2014, 29(3): 398-409.
[XU H J, YANG T B.Spatial-temporal variations of vegetation activities and its responses to climatic factors in the Qaidam Basin. Journal of Natural Resources, 2014, 29(3): 398-409. ]
[22] 李学梅, 任志远, 张翀. 气候因子和人类活动对重庆市植被覆盖变化的影响分析[J]. 地理科学, 2013, 33(11): 1390-1394.
[LI X M, REN Z Y, ZHANG C.Spatial-temporal variations of vegetation cover in Chongqing city (1999-2010): Impacts of climate factors and human activities. Scientia Geographica Sinica, 2013, 33(11): 1390-1394. ]
[23] 易浪, 任志远, 张翀, 等. 黄土高原植被覆盖变化与气候和人类活动的关系[J]. 资源科学, 2014, 36(1): 166-174.
[YI L, REN Z Y, ZHANG C, et al.Vegetation cover, climate and human activities on the Loess Plateau. Resources Science, 2014, 36(1): 166-174. ]
[24] 孙艳玲, 郭鹏, 延晓冬, 等. 内蒙古植被覆盖变化及其与气候、人类活动的关系[J]. 自然资源学报, 2010, 25(3): 407-414.
[SUN Y L, GUO P, YAN X D, et al.Dynamics of vegetation cover and its relationship with climate change and human activities in Inner Mongolia. Journal of Natural Resources, 2010, 25(3): 407-414. ]
[25] HOLBEN B N.Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 1986, 7(11): 1471-1434.
[26] PIAO S L, FANG J Y.Dynamic vegetation cover change over the last 18 years in China[J]. Quaternary Sciences, 2001, 21(4): 294-302.
[27] 穆少杰, 李建龙, 陈奕兆, 等. 2001—2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012, 67(9): 1255-1268.
[MU S J, LI J L, CHEN Y Z, et al.Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001-2010. Acta Geographica Sinica, 2012, 67(9): 1255-1268. ]
[28] 赵舒怡, 宫兆宁, 刘旭. 2001—2013年华北地区植被覆盖度与干旱条件的相关分析[J]. 地理学报,2015,70(5):717-729.
[ZHAO S Y, GONG Z N, LIU X, et al.Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001-2013. Acta Geographica Sinica, 2015, 70(5): 717-729. ]
[29] 宋怡, 马明国. 基于GIMMS AVHRR NDVI数据的中国寒旱区植被动态及其与气候因子的关系[J]. 遥感学报, 2008, 12(3): 499-506.
[SONG Y, MA M G.Variation of AVHRR NDVI and its relationship with climate in Chinese arid and cold regions. Journal of Remote Sensing, 2008, 12(3): 499-506. ]
[30] ALLEN R G, PEREIRA L S, RAES D, et al.Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper Vol.56[M]. Rome, Italy: Food and Agriculture Organization, 1998.
[31] EVANS J, GEERKEN R.Discrimination between climate and human-induced dryland degradation[J]. Journal of Arid Environments, 2004, 57(4): 535-554.
[32] GEERKEN R, ILAIWI M.Assessment of rangeland degradation and development of a strategy for rehabilitation[J]. Remote Sensing of Environment, 2004, 90(4): 490-504.
[33] 刘斌, 孙艳玲, 王中良, 等. 华北地区植被覆盖变化及其影响因子的相对作用分析[J]. 自然资源学报, 2015, 30(1): 12-23.
[LIU B, SUN Y L, WANG Z L, et al.Analysis of the vegetation cover change and the relative role of its influencing factors in North China. Journal of Natural Resources, 2015, 30(1): 12-23. ]
[34] 侯美亭, 胡伟, 乔海龙, 等. 偏最小二乘(PLS)回归方法在中国东部植被变化归因研究中的应用[J]. 自然资源学报, 2015, 30(3): 409-422.
[HOU M T, HU W, QIAO H L, et al.Application of partial least squares (PLS) regression method in attribution of vegetation change in eastern China. Journal of Natural Resources, 2015, 30(3): 409-422. ]
[35] 王惠文. 偏最小二乘回归方法及其应用 [M]. 北京: 国防工业出版社, 1999.
[WANG H W.Partial Least Squares Regression Method and Application. Beijing: National Defense Industry Press, 1999. ]
[36] PÉREZ-ENCISO M, TENENHAUS M. Prediction of clinical outcome with microarray data: A partial least squares discriminant analysis (PLS-DA) approach[J]. Human Genetics, 2003, 112(5/6): 581-592.
[37] JOHNSON R A, WICHERN D W.Applied Multivariate Statistical Analysis[M]. New Jersey: Prentice Hall, 2002.
[38] JUNG M, REICHSTEIN M, CIAIS P, et al.Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7318): 951-954.
[39] 郭铌, 朱燕君, 王介民, 等. 近22年来西北不同类型植被NDVI变化与气候因子的关系[J]. 植物生态学报, 2008, 32(2): 319-327.
[GUO N, ZHU Y J, WANG J M, et al.The relationship between NDVI and climate elements for 22 years in different vegetation areas of Northwest China. Journal of Plant Ecology, 2008, 32(2): 319-327. ]
文章导航

/