研究方法

各向异性反射对基于光谱混合分析的植被盖度估算的影响

展开
  • 内蒙古农业大学水利与土木建筑工程学院,内蒙古自治区水资源保护与利用重点实验室,呼和浩特 010018
段利民(1982- ),男,助理研究员,博士,研究方向为寒旱区生态水文。E-mail:dlm@imau.edu.cn

收稿日期: 2016-10-11

  修回日期: 2017-04-19

  网络出版日期: 2017-12-20

基金资助

国家自然科学基金项目(51369016,51620105003); 内蒙古农业大学优秀青年科学基金(2014XYQ-11); 内蒙古自然科学基金项目(2015MS0566); 教育部创新团队发展计划(IRT_17R60); 科技部重点领域创新团队(2015RA4013)

Anisotropic Reflectance Effect on the Spectral Mixture Analysis for Vegetation Coverage Estimation

Expand
  • Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China

Received date: 2016-10-11

  Revised date: 2017-04-19

  Online published: 2017-12-20

Supported by

National Natural Science Foundation of China, No.51369016 and 51620105003; Excellent Young Scientist Foundation of Inner Mongolia Agricultural University of China, No.2014XYQ-11; Natural Science Foundation of Inner Mongolia, No.2015MS0566; Ministry of Education Innovative Research Team, No.IRT_17R60; Innovation Team in Priority Areas Accredited by the Ministry of Science and Technology, No.2015RA4013

摘要

光谱混合分析法是解决亚像元植被盖度反演估算问题最行之有效的方法,线性光谱混合分析又是其中最常用的研究手段。传统观点认为基于线性光谱混合分析的植被盖度估算精度主要受多重散射和端元光谱可变性的影响,而且各向异性反射这个地物表面所固有的特性也常常被忽略。研究设计了由寸苔草、沙和水3种地物类别组成的棋盘式混合地物反射率光谱测试方案,在探讨分析传统的多重散射与端元光谱可变性的基础上,进一步分析评价了各向异性反射对基于光谱混合分析的植被盖度估算的影响。结果表明,各向异性反射是不可忽视的,在最小化多重散射及端元光谱可变性的影响后,考虑各向异性反射后寸苔草盖度估算精度显著提升,均方根误差RMSE下降了52%。研究不仅证实了各向异性反射在植被盖度估算问题中的重要性,还印证了其是同种端元类型光谱差异性的另一重要来源,拓宽了端元光谱可变性的范畴,为利用光谱混合分析法更准确地进行植被盖度估算提供了新的思路和方法。

本文引用格式

段利民, 童新, 刘廷玺 . 各向异性反射对基于光谱混合分析的植被盖度估算的影响[J]. 自然资源学报, 2017 , 32(12) : 2125 -2135 . DOI: 10.11849/zrzyxb.20161086

Abstract

Spectral mixture analysis (SMA) models are highly effective methods used to deal with sub-pixel vegetation coverage estimation, among which linear spectral mixture analysis (LSMA) is the most commonly used one. However, the precision of vegetation coverage estimation retrieved from LSMA is mainly affected by the multiple scattering and end-member spectral variability. Also, anisotropic reflectance effect (ARE), one of the distinctive and inherent properties of surfaces, is very likely to be ignored. This research conducted in situ spectral experiments by using checkerboard-style mixture design which incorporated three types of surfaces. After discussing and analyzing the traditional multiple scattering and the end-member spectral variability, the effect of anisotropic reflectance on the spectral mixture analysis for vegetation coverage estimation was further evaluated. The results indicated that the impact of ARE cannot be neglected. The Carex duriuscula coverage estimation was more accurate after considering of ARE, when minimizing the effect of the traditional multiple scattering and end-member spectral variability. The root mean square error (RMSE) decreased nearly 52%. These results not only emphasized the importance of integrating ARE into vegetation coverage estimation but also indicated that ARE can be regarded as another significant source of variability within the same end-member class. This study broadens the scope of end-member spectral variability, and may put forward a new thinking and direction for vegetation coverage estimation based on SMA.

参考文献

[1] SELLERS P J, TUCKER C J, COLLATZ G J, et al. A revised land surface parameterization (SiB2) for atmospheric gcms. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data [J]. Journal of Climate, 1996, 9(4): 706-737.
[2] DE ROO A P J, OFFERMANS R J E, CREMERS N H D T. LISEM: A single-event, physically based hydrological and soil erosion model for drainage basins. II: Sensitivity analysis, validation and application [J]. Hydrological Processes, 1996, 10(8): 1119-1126.
[3] 李斌, 张金屯. 不同植被盖度下的黄土高原土壤侵蚀特征分析 [J]. 中国生态农业学报, 2010, 18(2): 241-244. [LI B, ZHANG J T. Soil erosion characteristics under different vegetation coverage in the Loess Plateau. Chinese Journal of Eco-Agriculture, 2010, 18(2): 241-244. ]
[4] 杨胜天, 周旭, 刘晓燕, 等. 黄河中游多沙粗沙区(渭河段)土地利用对植被盖度的影响 [J]. 地理学报, 2014, 69(1): 31-41. [YANG S T, ZHOU X, LIU X Y, et al. Impacts of land use on vegetation coverage in the rich and coarse sediment area of Yellow River Basin. Acta Geographica Sinica, 2014, 69(1): 31-41. ]
[5] 任世龙, 宜树华, 陈建军, 等. 高山草地植被盖度对气候变暖和人类活动的响应 [J]. 草业科学, 2013, 30(4): 506-514. [REN S L, YI S H, CHEN J J, et al. Responses of green fractional vegetation cover of alpine grassland to climate warming and human activities. Pratacultural Science, 2013, 30(4): 506-514. ]
[6] 包刚, 包玉海, 覃志豪, 等. 高光谱植被覆盖度遥感估算研究 [J]. 自然资源学报, 2013, 28(7): 1243-1254. [BAO G, BAO Y H, QIN Z H, et al. Hyper-spectral remote sensing estimation for the vegetation cover. Journal of Natural Resources, 2013, 28(7): 1243-1254. ]
[7] 李晓松, 李增元, 吴波, 等. 基于光谱混合分析的毛乌素沙地油蒿群落覆盖度提取 [J]. 遥感学报, 2007, 11(6): 923-930. [LI X S, LI Z Y, WU B, et al. Retrieval of the coverage of Artemisia ordosica community in Mu Us Sandland based on spectral mixture analysis (SMA). Journal of Remote Sensing, 2007, 11(6): 923-930. ]
[8] HAERTEL V, SHIMABUKURO Y. Spectral linear mixing model in low spatial resolution image data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(11): 2555-2562.
[9] CAPELLA Z D, HAERTEL V, SHIMABUKURO Y, et al. Linear spectral mixing model for identifying potential missing endmembers in spectral mixture analysis [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 3005-3012.
[10] SOMERS B, COOLS K, DELALIEUX S, et al. Nonlinear hyperspectral mixture analysis for tree cover estimates in orchards [J]. Remote Sensing of Environment, 2009, 113(6): 1183-1193.
[11] 唐晓燕, 高昆, 倪国强. 高光谱图像非线性解混方法的研究进展 [J]. 遥感技术与应用, 2013, 28(4): 731-738. [TANG X Y, GAO K, NI G Q. Advances in nonlinear spectral unmixing of hyperspectral images. Remote Sensing Technology and Application, 2013, 28(4): 731-738. ]
[12] BOREL C C, GERSTL S A. Nonlinear spectral mixing models for vegetative and soil surfaces [J]. Remote Sensing of Environment, 1994, 47(3): 403-416.
[13] 罗红霞, 龚健雅. 线性和非线性光谱混合模型模拟土壤、植被混合光谱的效果分析 [J]. 测绘通报, 2005(5): 6-10. [LUO H X, GONG J Y. Effects of linear and nonlinear spectra mixing models on simulating mixing spectra of soil and canopy. Bulletin of Surveying and Mapping, 2005(5): 6-10. ]
[14] RAY T W, MURRAY B C. Nonlinear spectral mixing in desert vegetation [J]. Remote Sensing of Environment, 1996, 55(1): 59-64.
[15] ZHANG J, RIVARD B, SÁNCHEZ A A, et al. Intra-and inter-class spectral variability of tropical tree species at La Selva, Costa Rica: Implications for species identification using hydice imagery [J]. Remote Sensing of Environment, 2006, 105(2): 129-141.
[16] SOMERS B, ASNER G P, TITS L, et al. Endmember variability in spectral mixture analysis: A review [J]. Remote Sensing of Environment, 2011, 115(7): 1603-1616.
[17] ROBERTS D, GARDNER M, CHURCH R, et al. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models [J]. Remote Sensing of Environment, 1998, 65(3): 267-279.
[18] 赵子傑, 赵云升. 不同粒径沙地表面双向反射特性研究 [J]. 物理学报, 2014, 63(18): 435-441. [ZHAO Z J, ZHAO Y S. Bidirectional reflectance of sandy land surface with different particle sizes. Acta Physica Sinica, 2014, 63(18): 435-441. ]
[19] 申广荣, 王人潮. 基于神经网络的水稻双向反射模型研究 [J]. 遥感学报, 2002, 6(4): 252-258. [SHEN G R, WANG R C. Study on bi-directional reflectance model of rice using an artificial neural network. Journal of Remote Sensing, 2002, 6(4): 252-258. ]
[20] PROUD S R, ZHANG Q, SCHAAF C, et al. The normalization of surface anisotropy effects present in SEVIRI reflectances by using the MODIS BRDF method [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6026-6039.
[21] 童新, 刘廷玺, 杨大文, 等. 半干旱沙地-草甸区水面蒸发模拟及其影响因子辨识 [J]. 干旱区地理, 2015, 38(1): 10-17. [TONG X, LIU T X, YANG D W, et al. Simulating evaporation from a water surface for the sand-meadow ecotone of the semiarid region in North China. Arid Land Geography, 2015, 38(1): 10-17. ]
[22] ASD. Analytical Spectral Devices, Inc. Technical Guide [M]. Boulder, Colorado: ASD, 1999.
[23] SETTLE J. On the residual term in the linear mixture model and its dependence on the point spread function [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2): 398-401.
[24] 周玉洁, 王卷乐, 郭海会. 基于谐波分析和线性光谱模型的耕地信息提取 [J]. 遥感技术与应用, 2015, 30(4): 706-713. [ZHOU Y J, WANG J L, GUO H H. Application of harmonic analysis and linear spectral mixture model to extract the cultivated resource. Remote Sensing Technology and Application, 2015, 30(4): 706-713. ]
[25] KIMES D S. Dynamics of directional reflectance factor distributions for vegetation canopie [J]. Applied Opticks, 1983, 22(9): 1364-1372.
[26] ASNER G P, LOBELL D B. A biogeophysical approach for automated SWIR unmixing of soils and vegetation [J]. Remote Sensing of Environment, 2000, 74(1): 99-112.
[27] SETTLE J. On the effect of variable endmember spectra in the linear mixture model [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(2): 389-396.
[28] GAO F, SCHAAF C B, STRAHLER A H, et al. Detecting vegetation structure using a kernel-based BRDF model [J]. Remote Sensing of Environment, 2003, 86(2): 198-205.
[29] ROY D P, ZHANG H K, JU J, et al. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance [J]. Remote Sensing of Environment, 2016, 176: 255-271.
文章导航

/