资源评价

基于夜间灯光的城市居民直接碳排放及影响因素——以中原经济区为例

展开
  • 1. 华东师范大学地理信息科学教育部重点实验室,上海 200241;
    2. 浙江财经大学经济学院,杭州 310018;
    3. 河南大学 a. 环境与规划学院, b. 黄河文明与可持续发展研究中心,河南 开封 475001
赵金彩(1989- ),女,河南延津人,博士研究生,研究方向为地理计算。E-mail:zhaojincai1989@163.com

收稿日期: 2016-10-08

  修回日期: 2017-06-07

  网络出版日期: 2017-12-20

基金资助

河南省高校科技创新人才支持计划(16HASTIT022); 浙江省社科规划课题(18NDJC149YB); 国家自然科学基金政策研究重点支持项目(71742001)

Urban Residential CO2 Emissions and Its Determinants: A Case Study of Central Plains Economic Region

Expand
  • 1. Key Laboratory of Geographic Information Science, East China Normal University, Ministry of Education, Shanghai 200241, China;
    2. College of Economics, Zhejiang University of Finance & Economics, Hangzhou 310018, China;
    3. a. College of Environment and Planning, b. Key Research Institute of Yellow River Civilization and Sustainable Development, Henan University, Kaifeng 475001, China

Received date: 2016-10-08

  Revised date: 2017-06-07

  Online published: 2017-12-20

Supported by

Science & Technology Innovation Talents in Universities of Henan Province, No.16HASTIT022; Zhejiang Provincial Social Science Planning Fund Program, No.18NDJC149YB; National Natural Science Foundation of China, No.71742001

摘要

城市居民直接能源消耗及其碳排放对区域碳减排政策的制定具有重要影响。受统计数据缺乏与研究方法的限制,当前的研究不仅较少探讨精细空间尺度上的城市居民直接碳排放,同时也缺乏在县级尺度上对人均居民直接碳排放的影响因素进行深入分析。鉴于此,论文以中原经济区为例,通过引入夜间灯光数据,利用增强型饱和校正模型估算了网格尺度上的城市居民碳排放,并采用地理加权回归模型对其影响因素进行了分析。主要研究发现:中原经济区的碳排放总体空间特征是西北高、东南低。郑州市市辖区的城市居民直接碳排放总量位于首位,而邢台县、辉县市和襄垣县的人均碳排放较高。此外,就其影响因素来看,人均GDP、碳排放强度、第二产业比重和HDD(Heating Degree Days,热度日)均表现为正效应,城镇化率为负效应,而CDD(Cooling Degree Days,冷度日)的系数有正有负。城市居民直接碳排放的影响因素分析为中原经济区制定切实可行的区域碳排放政策提供了重要的基础理论依据。

本文引用格式

赵金彩, 钟章奇, 卢鹤立, 吴乐英, 陈玉龙 . 基于夜间灯光的城市居民直接碳排放及影响因素——以中原经济区为例[J]. 自然资源学报, 2017 , 32(12) : 2100 -2114 . DOI: 10.11849/zrzyxb.20161068

Abstract

Urban residential energy consumption and CO2 emissions have a major impact on regional carbon reduction policy. Due to lack of data and limitation of methods, spatial characteristics of urban residential CO2 emissions and its influencing factors at county scale have rarely been discussed. Therefore, taking the Central Plains Economic Region as a case, this paper used the DMSP-OLS nighttime light imageries corrected by enhanced saturation correction model to estimate the spatial distribution of carbon emissions at the 1 km resolution and analyze its influencing factors at the county scale with geographical weighted regression model. The rationality of our method was confirmed in the process of estimating carbon emissions. The linear regression model between the estimated CO2 emissions and the statistical CO2 emissions of urban residents with R2 of 0.837 1 demonstrated that the inversion model based on the nighttime light imageries has strong feasibility and suitability. Based on the carbon emissions of urban residents at 1 km resolution, we can calculate carbon emissions across administrative boundaries. In terms of spatial characteristics, CO2 emissions in the northwest Central Plains Economic Region were significantly higher than those in the southeast. Moreover, Zhengzhou District held the first place of CO2 emissions with total amount of 2.47 ×106 t, accounting for 6.58% of total CO2 emissions. However, Xingtai, Huixian and Xiangyuan were the regions with high CO2 emissions per capita, and these regions with higher carbon emissions per capita should be paid more attention. With respect to influencing factors, per capita GDP, carbon intensity, proportion of secondary industry and HDD (Heating Degree Days) all have the positive effects on urban residential carbon emissions at the county scale. However, urbanization rate presented a negative effect. Furthermore, it's important to note that CDD (Cooling Degree Days) has positive impact on urban residential carbon emissions in some cities while has negative impact in other cities. However, the maximum coefficient of its negative impact was 0.046 6, which could be ignored compared with the coefficient of positive impact. Therefore, CDD would be regarded as a positive influencing factor as a whole. Overall, the analysis of influencing factors in this paper provides an important theory basis for policy-makers to carry out more feasible policy on regional carbon emissions in the Central Plains Economic Region.

参考文献

[1] FAN J L, LIAO H, LIANG Q M, et al. Residential carbon emission evolutions in urban-rural divided China: An end-use and behavior analysis [J]. Applied Energy, 2013, 101(1): 323-332.
[2] ZHAO X L, LI N, MA C B. Residential energy consumption in urban China: A decomposition analysis [J]. Energy Policy, 2012, 41(1): 644-653.
[3] 国家统计局. 中国统计年鉴 [M]. 北京: 中国统计出版社, 2015. [National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2015.]
[4] ZHOU N, MCNEIL M A, LEVINE M. Energy for 500 million homes: Drivers and outlook for residential energy consumption in China [R]. Environmental Energy Technologies Division, Ernest Orlando Lawrence Berkeley National Laboratory-2417E, 2009.
[5] LIU L C, WU G, WANG J N, et al. China's carbon emissions from urban and rural households during 1992-2007 [J]. Journal of Cleaner Production, 2011, 19(15): 1754-1762.
[6] 张艳, 秦耀辰, 闫卫阳, 等. 我国城市居民直接能耗的碳排放类型及影响因素 [J]. 地理研究, 2012, 31(2): 345-356. [ZHANG Y, QIN Y C, YAN W Y, et al. Urban types and impact factors on carbon emissions from direct energy consumption of residents in China. Geographical Research, 2012, 31(2): 345-356. ]
[7] 刘晔, 刘丹, 张林秀. 中国省域城镇居民碳排放驱动因素分析 [J]. 地理科学, 2016, 36(5): 691-696. [LIU Y, LIU D, ZHANG L X. Driving factors analysis of carbon emissions in Chinese provincial urban households. Scientia Geographica Sinica, 2016, 36(5): 691-696. ]
[8] 叶红, 潘玲阳, 陈峰, 等. 城市家庭能耗直接碳排放影响因素——以厦门岛区为例 [J]. 生态学报, 2010, 30(14): 3802-3811. [YE H, PAN L Y, CHEN F, et al. Direct carbon emission from urban residential energy consumption: A case study of Xiamen, China. Acta Ecologica Sinca, 2010, 30(14): 3802-3811. ]
[9] 王丹寅, 唐明方, 仁引. 丽江市家庭能耗碳排放特征及影响因素 [J]. 生态学报, 2012, 32(24): 7716-7721. [WANG D Y, TANG M F, REN Y. The characteristics and influential factors of direct carbon emissions from residential energy consumption: A case study of Lijiang city, China. Acta Ecologica Sinca, 2012, 32(24): 7716-7721. ]
[10] TSO G K F, GUAN J. A multilevel regression approach to understand effects of environment indicators and household features on residential energy consumption [J]. Energy, 2014, 66(2): 722-731.
[11] GUAN D, LIU Z, GENG Y, et al. The gigatonne gap in China's carbon dioxide inventories [J]. Nature Climate Change, 2012, 2(9): 672-675.
[12] XIE Y H, WENG Q H. Detecting urban-scale dynamics of electricity consumption at Chinese cities using time-series DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan System) nighttime light imageries [J]. Energy, 2016, 100: 177-189.
[13] 李治, 李培, 郭菊娥, 等. 城市家庭碳排放影响因素与跨城市差异分析 [J]. 中国人口·资源与环境, 2013, 23(10): 87-94. [LI Z, LI P, GUO J E, et al. Impact factors estimation and research on the differences across cities of residential CO 2 emissions in Chinese major cities. China Population, Resources and Environment, 2013, 23(10): 87-94. ]
[14] ZHU D, TAO S, WANG R, et al. Temporal and spatial trends of residential energy consumption and air pollutant emissions in China [J]. Applied Energy, 2013, 106(11): 17-24.
[15] 卓莉, 陈晋, 史培军, 等. 基于夜间灯光数据的中国人口密度模拟 [J]. 地理学报, 2005, 60(2): 266-276. [ZHUO L, CHEN J, SHI P J, et al. Modeling population density of China in 1998 based on DMSP/OLS nighttime light image. Acta Geographica Sinica, 2005, 60(2): 266-276. ]
[16] YAO Y L. Correlation of human activities with population and GDP in Chinese cities—Based on the data of DMSP-OLS [J]. International Journal of Economics and Management Engineering, 2012, 2(3): 125-128.
[17] CHAND T R K, BADARINATH K V S, ELVIDGE C D, et al. Spatial characterization of electrical power consumption patterns over India using temporal DMSP-OLS night-time satellite data [J]. International Journal of Remote Sensing, 2009, 30(3): 647-661.
[18] HE C Y, MA Q, LI T, et al. Modeling the spatiotemporal dynamics of electric power consumption in Mainland China using saturation-corrected DMSP/OLS nighttime stable light data [J]. International Journal of Digital Earth, 2014, 7(12): 993-1014.
[19] SU Y X, CHEN X Z, LI Y, et al. China's 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines [J]. Renewable & Sustainable Energy Reviews, 2014, 35: 231-243.
[20] CHEN H, HUANG Y, SHEN H Z, et al. Modeling temporal variations in global residential energy consumption and pollutant emissions [J]. Applied Energy, 2015, 20(2): 327-340.
[21] MENG L N, GRAUS W, WORRELL E, et al. Estimating CO 2 (carbon dioxide) emissions at urban scales by DMSP/OLS (Defense Meteorological Satellite Program's Operational Linescan System) nighttime light imagery: Methodological challenges and a case study for China [J]. Energy, 2014, 71: 468-478.
[22] LU H L, LIU G F. Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using enhanced nocturnal lighting [J]. Applied Energy, 2014, 131(9): 297-306.
[23] XU Y, DIETZENBACHER E. A structural decomposition analysis of the emissions embodied in trade [J]. Ecological Economics, 2014, 101: 10-20.
[24] 赵荣钦, 张帅, 黄贤金, 等. 中原经济区县域碳收支空间分异及碳平衡分区 [J]. 地理学报, 2014, 69(10): 1425-1437. [ZHAO R Q, ZHANG S, HUANG X J, et al. Spatial variation of carbon budget and carbon balance zoning of Central Plains Economic Region at county-level. Acta Geographica Sinica, 2014, 69(10): 1425-1437. ]
[25] 李亚婷, 潘少奇, 苗长虹. 中原经济区县际经济联系网络结构及其演化特征 [J]. 地理研究, 2014, 33(7): 1239-1250. [LI Y T, PAN S Q, MIAO C H. Structure and evolution of economic linkage network at county level in Central Plains Economic Zone. Geographical Research, 2014, 33(7): 1239-1250. ]
[26] 国家统计局. 中国能源统计年鉴 [M]. 北京: 中国统计出版社, 2012. [National Bureau of Statistics of China. China Energy Statistical Yearbook. Beijing: China Statistics Press, 2012. ]
[27] ZHANG Q. Residential energy consumption in China and its comparison with Japan, Canada, and USA [J]. Energy and Buildings, 2004, 36(12): 1217-1225.
[28] LETU H, HARA M, YAGI H, et al. Estimating energy consumption from night-time DMPS/OLS imagery after correcting for saturation effects [J]. International Journal of Remote Sensing, 2010, 31(16): 4443-4458.
[29] 卓莉, 张晓帆, 郑璟, 等. 基于EVI指数的DMSP/OLS夜间灯光数据去饱和方法 [J]. 地理学报, 2015, 70(8): 1339-1350. [ZHUO L, ZHANG X F, ZHENG J, et al. An EVI-based method to reduce saturation of DMSP/OLS nighttime light data. Acta Geographica Sinica, 2015, 70(8): 1339-1350. ]
[30] SHI K, CHEN Y, YU B, et al. Modeling spatiotemporal CO 2 (carbon dioxide) emission dynamics in China from DMSP/OLS nighttime stable light data using panel data analysis [J]. Applied Energy, 2016, 168: 523-533.
[31] WANG S J, FANG C L, MA H T, et al. Spatial differences and multi-mechanism of carbon footprint based on GWR model in provincial China [J]. Journal of Geographical Sciences, 2014, 24(4): 612-630.
[32] FAN J L, YU H, WEI Y M. Residential energy-related carbon emissions in urban and rural China during 1996-2012: From the perspective of five end-use activities [J]. Energy and Buildings, 2015, 96: 201-209.
[33] GU Z, SUN Q, WENNERSTEN R. Impact of urban residences on energy consumption and carbon emissions: An investigation in Nanjing, China [J]. Sustainable Cities and Society, 2013, 7: 52-61.
[34] 陈琦, 郑一新, 陈云波, 等. 昆明市城镇家庭消费碳排放特征及影响因素分析 [J]. 环境科学导刊, 2010, 29(5): 14-17. [CHEN Q, ZHENG Y X, CHEN Y B, et al. Analysis of characteristics and influencing factors of carbon emissions with urban family consumption in Kunming City. Environmental Sciences Survey, 2010, 29(5): 14-17. ]
[35] 冯玲, 吝涛, 赵千钧. 城镇居民生活能耗与碳排放动态特征分析 [J]. 中国人口·资源与环境, 2011, 21(5): 93-100. [FENG L, LIN T, ZHAO Q J. Analysis of the dynamic characteristics of urban household energy use and carbon emissions in China. China Population, Resources and Environment, 2011, 21(5): 93-100. ]
[36] 汪东, 汲奕君, 田丽丽, 等. 中国居民生活能源消费CO 2 排放的影响因素研究 [J]. 环境污染与防治, 2012, 34(4): 101-105. [WANG D, JI Y J, TIAN L L, et al. Study on influencing factors of CO 2 emissions from residential energy consumption in China. Environmental Pollution and Control, 2012, 34(4): 101-105. ]
[37] 张艳, 陈太政, 秦耀辰. 中国城市居民直接能耗碳排放的空间格局及影响因素 [J]. 河南大学学报(自然科学版), 2013, 43(2): 161-167. [ZHANG Y, CHEN T Z, QIN Y C. Spatial pattern and the influencing factors of CO 2 emissions from urban residents direct energy consumption. Journal of Henan University (Natural Science Edition), 2013, 43(2): 161-167. ]
[38] 曲建升, 张志强, 曾静静, 等. 西北地区居民生活碳排放结构及其影响因素 [J]. 科学通报, 2013, 58(3): 260-266. [QU J S, ZHANG Z Q, ZENG J J, et al. Household carbon emission differences and their driving factors in northwestern China. Chinese Science Bulletin, 2013, 58(3): 260-266. ]
[39] FORTHERINGHAM A S, BRUNSDON C, CHARLTON M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships [M]. Wiley, New Work, 2002.
[40] ZHANG C, LIN Y. Panel estimation for urbanization, energy consumption and CO 2 emissions: A regional analysis in China [J]. Energy Policy, 2012, 49: 488-498.
[41] ZHU Q, PENG X. The impacts of population change on carbon emissions in China during 1978-2008 [J]. Environmental Impact Assessment Review, 2012, 36: 1-8.
[42] 万文玉, 赵雪雁, 王伟军. 中国城市居民生活能源碳排放的时空格局及影响因素分析 [J]. 环境科学学报, 2016, 36(9): 3445-3455. [WAN W Y, ZHAO X Y, WANG W J. Spatial-temporal patterns and impact factors analysis on carbon emissions from energy consumption of urbanresidents in China. Acta Scientiae Circumstantiae, 2016, 36(9): 3445-3455. ]
[43] 杜威, 樊胜岳. 城镇化进程中居民生活碳排放动态特征分析 [J]. 生态经济, 2016, 32(5): 48-52. [DU W, FAN S Y. Dynamic analysis of carbon emissions for urban and rural residents in the process ofurbanization. Ecological Economy, 2016, 32(5): 48-52. ]
[44] 刘莉娜, 曲建升, 黄雨生, 等. 中国居民生活碳排放的区域差异及影响因素分析 [J]. 自然资源学报, 2016, 31(8): 1364-1377. [LIU L N, QU J S, HUANG Y S, et al. Analyze on the spatial-temporal pattern and influence factors of China's per capita household carbon emissions. Journal of Natural Resources, 2016, 31(8): 1364-1377. ]
文章导航

/