资源评价

基于GRACE卫星时变重力场模型的黄河中游地区水储量变化研究

展开
  • 北京师范大学水科学研究院,北京 100875
李爱华(1989- ),女,硕士,主要从事水文与水资源和城市污水处理回用研究。 *通信作者简介:王红瑞(1963- ),男,教授,博士生导师。E-mail:henrywang@bnu.edu.cn

收稿日期: 2016-03-08

  修回日期: 2016-10-14

  网络出版日期: 2017-03-20

基金资助

国家科技支撑计划项目(2012BAB02B04)

Water Storage Changes in the Middle Reaches of the Yellow River Basin Based on GRACE Time Variable Gravitation Model

Expand
  • College of Water Sciences, Beijing Normal University, Beijing 100875, China

Received date: 2016-03-08

  Revised date: 2016-10-14

  Online published: 2017-03-20

Supported by

Foundation item: National Hi-Tech Research and Development Program of China“863”Project, No. 2012BAB02B04.

摘要

论文以水循环发生巨大改变的黄河中游地区作为研究对象,利用GRACE卫星时变重力场模型以及黄河中游地区的水文数据,通过水循环系统的概化、子流域划分以及Mann-Kendall非参数检验等方法,对黄河中游地区以及各个子流域水储量变化进行研究。主要结论如下:近10 a,黄河中游地区水储量以年均3.79 mm等效水深的速度增加,而引起水储量增加的主要原因是该地区径流损失量减少,年均减少量超过2.93 mm等效水深;黄河中游地区水储量的空间变化差异性较大,水储量增加最大的区域是龙门—三门峡区间,年平均增加4.59 mm等效水深,而增加量较小的是三门峡—花园口区间,年平均增加2.71 mm等效水深,水储量增加居中的则是河口—龙门区间,年平均增加3.47 mm等效水深。

本文引用格式

李爱华, 崔胜玉, 王红瑞, 于忱 . 基于GRACE卫星时变重力场模型的黄河中游地区水储量变化研究[J]. 自然资源学报, 2017 , 32(3) : 461 -473 . DOI: 10.11849/zrzyxb.20160233

Abstract

This study targets the middle reaches of the Yellow River Basin where the huge changes have been taking place in the water cycle process. By constructing GRACE satellite gravitational field model, the water storage changes in the middle reaches of the Yellow River Basin were inverted and the result was validated. The result derived from GRACE satellite and that from water balance model show the same temporal trend of water storage change, the square of the correlation coefficient being 0.82. The amount of water storage over the middle reaches of the Yellow River Basin had an increasing trend from 2003 to 2012, and the average annual increasing amount was water storage change equivalent water depth. The increase of water storage was caused by the decrease in runoff loss in the middle reaches of the Yellow River Basin, that the average annual decreasing amount was 2.93 mm equivalent water depth. There was obvious spatial variation of the water storage change. The most obvious increasing of water storage is at Longmen-Sanmenxia section, where the average annual increasing amount was 4.59 mm equivalent water depth. The second is at the Hekou-Longmen section, where the average annual increasing amount was 3.47 mm equivalent water depth. And the last one is at Sanmenxia-Huayuankou section, where the average annual increasing amount was 2.71 mm equivalent water depth.

参考文献

[1] 许民, 叶柏生. 2002—2010年长江流域 GRACE水储量时空变化特征 [J]. 地理科学进展, 2013, 32(8): 68-77.

[2] 钟敏. 利用卫星重力观测研究近5年中国陆地水量中长空间尺度的变化趋势 [J]. 科学通报, 2009, 54(9): 1290-1294.

[3] HOLLINGER J P, PEIRCE J L, POE G A. SSM/I instrument evaluation [J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(5): 781-790.
[4] WEN J, JACKSON T J, BINDLISH R, et al. Retrieval of soil moisture and vegetation water content using SSM/I data over a corn and soybean region [J]. Journal of Hydrometeorology, 2005, 6(6): 854-863.
[5] LAKSHMI V. Remote sensing of soil moisture [J]. ISRN Soil Science, 2013, http://dx.doi.org/10.1155/2013/424178.
[6] AMICO J T, SCHLENZ F, LOEWA, et al. First results of SMOS soil moisture validation in the upper Danube Catchment [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1507-1516.
[7] RODELL M, HOUSER P R, JAMBOR U, et al. The global land data assimilation system [J]. Bulletin of the American Meteorological Society, 2004, 85(3): 381-394.
[8] CAZENAVE A, NEREM R S. Redistributing earth mass [J]. Science, 2002, 297(5582): 783-784.
[9] COX C M, CHAO B F. Detection of a large-scale mass redistribution in the terrestrial system since 1998 [J]. Science, 2002, 297(5582): 831-833.
[10] WAHR J, MOLENAAR M, BRYAN F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE [J]. Journal of Geophysical Research, 1998,103(B12): 30205-30229.
[11] SWENSON S, WAHR J. Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements [J]. Journal of Hydrometeorology, 2006, 7(2): 252-270.
[12] 刘卫, 缪元兴. 基于GRACE数据的西南陆地水储量分析 [J]. 天文学报, 2011, 52(2): 145-151.

[13] 胡小工. 利用GRACE空间重力测量监测长江流域水储量的季节性变化 [J]. 中国科学D辑(地球科学), 2006, 36 (3): 225-232.

[14] 曹艳萍, 南卓铜. 利用GRACE重力卫星监测黑河流域水储量变化 [J]. 遥感技术与应用, 2011, 6(6): 719-727.

[15] 任永强, 宫辉力. 海河流域地下水储量时变趋势分析 [J]. 首都师范大学学报, 2013, 34(8): 88-93.

[16] 王艳阳. 基于GRACE数据的区域水量变化研究 [D]. 北京: 北京师范大学, 2013.

[17] 王红瑞, 张文新, 胡秀丽, 等. 北京市丰台区土地利用结构多目标优化 [J]. 系统工程理论与实践, 2009, 29(2): 186-192.

[18] 王红瑞, 董艳艳, 王军红, 等. 北京市农作物虚拟水含量分布 [J]. 环境科学, 2007, 28(11): 2432-2437.

[19] 苏晓莉, 平劲松, 叶其欣. GRACE卫星重力观测揭示华北地区陆地水量变化 [J]. 中国科学(地球科学), 2012, 23(6): 917-922.

[20] SYED T H, FAMIGLIETTI J S, RODELLM, et al. Analysis of terrestrial water storage changes from GRACE and GLDAS [J]. Water Resources Research, 2008, 44(2): 2433-2455.
[21] 冉全, 潘云. GRACE卫星数据在海河流域地下水年开采量估算中的应用 [J]. 水利水电科技进展, 2013, 33(2): 42-46.

[22] YEH P J F, SWENSON S C, FAMIGLIETTI J S. Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE) [J]. Water Resources Research, 2006, 42(12), W12203, doi:10.1029/2006WR005374.
[23] 傅抱璞. 论陆面蒸发的计算 [J]. 大气科学, 1981, 5(1): 23-31.

[24] 雷晓辉, 田雨, 白薇. 基于DEM的子流域划分方法改进与应用 [J]. 人民黄河, 2011, 33(2): 32-36.
文章导航

/