资源评价

黄淮海平原冬小麦种植的气候变化适应评估

展开
  • 中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室,北京 100101
胡实(1982- ),女,博士,研究方向为生态水文。E-mail:hus.08b@igsnrr.ac.cn *通信作者简介:莫兴国(1966- ),男,博士,研究员,研究方向为生态水文。E-mail:moxg@igsnrr.ac.cn

收稿日期: 2015-12-30

  修回日期: 2016-06-05

  网络出版日期: 2016-11-20

基金资助

科技部973项目(2010CB428404); 国家自然科学基金项目(31300374)

Adaptation of Winter Wheat to Climate Change inHuang-Huai-Hai Plain

Expand
  • Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of GeographicSciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2015-12-30

  Revised date: 2016-06-05

  Online published: 2016-11-20

Supported by

Chinese Ministry of Science and Technology Projects, No.2010CB428404; National Natural Science Foundation of China, No.31300374

摘要

水资源短缺影响黄淮海平原农业稳定和可持续发展。气候变化情景下,农业用水紧张的问题可能进一步加剧,种植制度和作物品种区域布局将面临调整。论文利用IPCC 5三种代表性温室气体浓度排放路径(RCP 2.6、RCP 4.5和RCP 8.5)的多模式集成数据,基于VIP(soil-Vegetation-atmosphere Interface Processes)生态水文模型,模拟了2011—2059年黄淮海平原二级子流域的水资源盈亏变化。在此基础上,针对水分亏缺最严重的子流域,设计无外来调水和维持2000—2010年调水总量水平的两种流域地下水采补均衡情景,对冬小麦种植区域的合理布局及其对产量的影响进行评估。结果表明,2050年代黄淮海平原农作物蒸散量增幅大于降雨量增幅,北部地区水分亏缺量将增加,南部地区水分盈余量则减少。在低到高的排放情景下,全区域水分盈余量下降0.1%~14.1%。两种地下水采补均衡情景下,2050年代黄淮海平原冬小麦种植面积应分别减少9.8%~11.3%和7.0%~8.8%,相应产量分别增加0~11.9%和3.0%~15.9%。适当减少冬小麦种植面积,可有效减缓黄淮海地区农业水资源的不足,保护生态环境,促进农业可持续发展。

本文引用格式

胡实, 莫兴国, 林忠辉, 刘苏峡 . 黄淮海平原冬小麦种植的气候变化适应评估[J]. 自然资源学报, 2016 , 31(11) : 1892 -1905 . DOI: 10.11849/zrzyxb.20151439

Abstract

Water scarcity is a key factor for the stability and sustainability of agricultural productivity in Huang-Huai-Hai Plain. Considering water shortage may be aggravated by climate change, cropping structure should be adjusted to alleviate the worsening situation. Based on the multi-model datasets of three representative concentration pathways (RCP) emission scenarios from IPCC5, the effect of climate change on water balance at sub-basin scale during 2011-2059 was assessed by VIP (soil-Vegetation-atmosphere Interface Processes) model. For the sub-basins with most serious shortage of water resource, two groundwater balance scenarios were proposed based on the principle of groundwater exploitation and infiltration balance. One scenario (scenario A) supposes that there is no inter-basin water transfer in 2050s, the other (scenario B) supposes that the inter-basin water transfer remains the average level in 2000-2010 in 2050s. The balance between water supply and demand is kept stable by shrinking the planting area of crop with high water consumption in both scenarios. The effect of climate change on planting area and yield of winter wheat in the two scenarios was assessed by VIP model. The results showed that the rainfall surplus in the whole plain will decrease 0.1%-14.1% in 2050s from low emission scenario to high emission scenario since the crop evapotranspiration increases more quickly than the precipitation does. In the north part of the plain water deficit will be exacerbated, and in the south part of the plain rainfall surplus will decrease. With respect to water balance, the planting area of winter wheat in Huang-Huai-Hai Plain should be shrunk 9.8%-11.3% in scenario A and 7.0%-8.8% in scenario B in 2050s, however, the wheat yield will increase 0-11.9% and 3.0%-15.9% in corresponding scenario due to the CO2 fertilization. Shrinking planting area of winter wheat can effectively mitigate the agricultural water shortage in Huang-Huai-Hai Plain. The research results can provide underpinnings for government’s decisions

参考文献

[1] 国家发展改革委, 水利部, 建设部. 水利发展“十一五”规划 [R]. 2007.

[2] 李玉敏, 王金霞. 农村水资源短缺: 现状、趋势及其对作物种植结构的影响——基于全国10个省调查数据的实证分析 [J]. 自然资源学报, 2009, 24(2): 200-208.

[3] CHEN J Y, TANG C Y, SHEN Y J, et al. Use of water balance calculation and tritium to examine the dropdown of groundwater table in the piedmont of the North China Plain (NCP) [J]. Environmental Geology, 2003, 44: 564-571.
[4] 张兆吉, 费宇红, 陈宗宇, 等. 华北平原地下水可持续利用调查评价 [M]. 北京: 地质出版社, 2009: 1-9.

[5] 水利部. 中国水资源公报 [R]. 2005.

[6] 程维新. 农田蒸发与作物耗水量研究 [M]. 北京: 气象出版社, 1994: 82-127.

[7] 李春强, 李保国, 洪克勤. 河北省近35年农作物需水量变化趋势分析 [J]. 中国生态农业学报, 2009, 17(2): 359-363.

[8] 张光辉, 刘中培, 费宇红, 等. 华北平原区域水资源特征与作物布局结构适应性研究 [J]. 地球学报, 2010, 31(1): 17-22.

[9] XIONG W, HOLMAN I, LIN E, et al. Climate change, water availability and future cereal production in China [J]. Agriculture, Ecosystems and Environment, 2010, 135: 58-69.
[10] 王学, 李秀彬, 辛良杰. 河北平原冬小麦播种面积收缩及由此节省的水资源量估算 [J]. 地理学报, 2013, 68(5): 697-707.

[11] 高明杰, 罗其友. 水资源约束地区种植结构优化研究——以华北地区为例 [J]. 自然资源学报, 2008, 23(2): 204-210.

[12] ALLEN R G, SMITH M, PERRIER A, et al. An update for the definition of reference evapotranspiration [J]. ICID Bulletin, 1994, 43(2): 1-34.
[13] ALLEN R G, PEREIRA L S, SMITH D R M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements [M]. FAO Irrigation and Drainage Paper 56. Rome: Food and Agriculture Organization, 1998.
[14] 刘钰, 汪林, 倪广恒, 等. 中国主要作物灌溉需水量空间分布特征 [J]. 农业工程学报, 2009, 25(12): 6-12.

[15] MO X G, LIU S X, LIN Z H. Evaluation of an ecosystem model for a wheat-maize double cropping system over the North China Plain [J]. Environmental Modelling & Software, 2012, 32: 61-73.
[16] 莫兴国, 刘苏峡, 林忠辉, 等. 华北平原蒸散和GPP格局及其对气候波动的响应 [J]. 地理学报, 2011, 66(5): 589-598.

[17] HU S, MO X. Optimizing photosynthetic parameter of ecosystem models by assimilating remote sensing data with an integrated scheme [J]. Agricultural and Forest Meteorology, 2014, 198: 320-334.
[18] 胡实, 莫兴国, 林忠辉. 气候变化对黄淮海平原冬小麦产量和耗水的影响及品种适应性评估 [J]. 应用生态学报, 2015, 26(4): 1153-1161.

[19] 夏军, 刘孟雨, 贾绍凤, 等. 华北地区水资源及水安全问题的思考与研究 [J]. 自然资源学报, 2004, 19(5): 550-561.

[20] 姜杰, 张永强. 华北平原灌溉农田的土壤水量平衡和水分利用效率 [J]. 水土保持学报, 2004, 18(3): 61-65.

[21] 沈国舫, 石玉林. 中国区域农业资源合理配置、环境综合治理和农业区域协调发展战略研究综合报告 [M]. 北京: 中国农业出版社, 2008.

[22] 隋鹏. 黄淮海平原节水种植模式生态经济分析及优化配置研究——以河北省栾城县为例 [D]. 北京: 中国农业大学, 2005.

[23] FENG Z M, LIU D W, ZHANG Y H. Water requirements and irrigation scheduling of spring maize using GIS and CropWat model in Beijing-Tianjin-Hebei region [J]. Chinese Geographical Sciences, 2007, 17(1): 56-63.
[24] 郭步庆, 陶洪斌, 王璞, 等. 华北平原不同粮作模式下作物水分利用 [J]. 中国农业大学学报, 2013, 18(1): 53-60.

[25] PORTEAUS F, HILL J, BALL A S, et al. Effect of Free Air Carbon-dioxide Enrichment (FACE) on the chemical composition and nutritive value of wheat grain and straw [J]. Animal Feed Science and Technology, 2009, 149: 322-332.
[26] 房世波, 沈斌, 谭凯炎, 等. 大气CO 2 和温度升高对农作物生理及生产的影响 [J]. 中国生态农业学报, 2010, 18(5): 1116-1124.

[27] LONG S P, AINSWORTH E A, LEAKEY A D B, et al. Food for thought: Lower-than-expected crop yield stimulation with rising CO 2 concentrations [J]. Science, 2006, 312: 1918-1921.
[28] AMTHOR J S. Effects of atmospheric CO 2 concentration on wheat yield: Review of results from experiments using various approaches to control CO 2 concentration [J]. Field Crops Research, 2001, 73: 1-34.
[29] TUBIELLO F N, AMTHOR J S, BOOTE K J, et al. Crop response to elevated CO 2 and world food supply: A comment on “Food for Thought” by Long et al., Science 312: 1918-1921, 2006” [J]. European Journal of Agronomy, 2007, 26: 215-223.
文章导航

/