论文研究四川省2000—2014年气溶胶光学厚度的时空演变趋势,并综合自然和人为两方面因素,从区域尺度上对四川省气溶胶光学厚度演变的驱动力进行定量研究,更进一步从像元尺度上分析驱动力的空间分异。结果表明:1)四川省以中部盆地为气溶胶光学厚度高值中心区且增长趋势最为明显,川东平行岭谷值较小且有轻度减少趋势,川西高原、川西南山地值最小,但有轻度增长趋势;2)区域尺度上,对气溶胶光学厚度驱动力主导因子进行定量研究,建立了气溶胶光学厚度(AOD)与GNP、降水量和归一化植被指数的多元回归模型,即AOD=0.849+0.567×GNP-0.909×降水量-0.077×归一化植被指数,该模型较好地体现了在更为宏观的区域层面上四川省气溶胶光学厚度演变驱动力的定量作用;3)像元尺度上,驱动力的空间分异表现为中部盆地气溶胶光学厚度主要受人为和地表因素影响,川东平行岭谷、川西高原和川西南山地气溶胶光学厚度受气象和地表因素影响较多。由于川渝地区秋冬季多云雾,有效的气溶胶卫星观测数据偏少,因此如何在秋冬季获取气溶胶光学厚度有效数据是未来应加强的工作;在驱动力因子方面人为因子的选取划分可以进一步具体化;由点到面的插值会影响驱动力因子数据的精度,故如何通过高精度的插值方法来提高数据的精度亦是未来提高驱动力定量研究准确性的发展方向。
The paper studied the trend of temporal and spatial changes of aerosol optical depth from 2000 to 2014 in Sichuan Province, and quantitatively analyzed the driving forces of the evolution of the aerosol optical depth in Sichuan Province on regional scale by combining natural and artificial factors, and further analyzed the spatial differentiation of driving forces on pixel scale. From this research, we concluded that: 1) The aerosol optical depth at the central Sichuan Province is the biggest and its growth trend is the most obvious, and the value in the parallel ridge valley of eastern Sichuan is smaller and shows a mild decrease trend, while the values in western Sichuan Plateau and southwestern mountainous area are the smallest and have mild growing trends. 2) On the regional scale, we quantitatively studied the dominant driving forces of aerosol optical depth, and established the multivariate regression model of the aerosol optical depth with relation to GNP, precipitation and normalized vegetation index: AOD=0.849+0.567×GNP-0.909×precipitation-0.077×NDVI. The model reflected the quantitative effects of driving forces on the regional level. 3) On the pixel scale, the aerosol optical depth of Sichuan Basin has been mainly affected by human and earth surface factors, and the aerosol optical depth in eastern parallel valley area, western Sichuan Plateau and southwestern mountainous area has been mainly affected by the earth surface and meteorology factors. Because of the cloudy weathers in fall and winter in Sichuan-Chongqing region, there is less effective aerosol satellite observation data, so acquiring the aerosol optical thickness data in fall and winter should be strengthened, the anthropogenic factors should be divided more specifically, and high-precision interpolation method should be used to improve the accuracy of the driving factors data. These are the directions which can improve the accuracy of quantitative research of the driving force.
[1] 范娇, 郭宝峰, 何宏昌. 基于MODIS数据的杭州地区气溶胶光学厚度反演 [J]. 光学学报, 2015, 35(1): 1-9. [FAN J, GUO B F, HE H C. Retrieval of aerosol optical thickness with MODIS data over Hangzhou. Acta Optica Sinica, 2015, 35(1): 1-9. ]
[2] RICHTER R, SCHLAPFER D, MULLER A. An automatic atmospheric correction algorithm for visible/NIR imagery [J]. International Journal of Remote Sensing, 2006, 27(10): 2077-2085.
[3] 孙林, 柳钦火, 刘强, 等. 高反射率地区气溶胶光学厚度遥感反演: 现状及展望 [J]. 地理科学进展, 2006, 25(3): 70-78. [SUN L, LIU Q H, LIU Q, et al. Aerosol optical thickness retrieving over bright surface: Progress and prospect. Progressin Geography, 2006, 25(3): 70-78. ]
[4] 周永波, 白洁, 周著华, 等. FY-3A/MERSI海上沙尘天气气溶胶光学厚度反演 [J]. 遥感学报, 2014, 18(4): 771-787. [ZHOU Y B, BAI J, ZHOU Z H, et al. Aerosol optical depth retrieval from FY-3A/MERSI for sand-dust weather over ocean. Journal of Remote Sensing, 2014, 18(4): 771-787. ]
[5] DE MEIJ A, POZZER A, LELIEVELD J. Global and regional trends in aerosol optical depth based on remote sensing products and pollutant emission estimates between 2000 and 2009 [J]. Atmospheric Chemistry & Physics Discussions, 2010, 10(12): 30731-30776.
[6] 罗云峰, 吕达仁, 周秀骥, 等. 30年来我国大气气溶胶光学厚度平均分布特征分析 [J]. 大气科学, 2002, 26(6): 721-730. [LUO Y F, LV D R, ZHOU X J, et al. Analyses on the spatical distribution of aerosol optical depth over China in recent 30 years. Chinese Journal of Atmospheric Sciences, 2002, 26(6): 721-730. ]
[7] 关佳欣, 李成才. 我国中、东部主要地区气溶胶光学厚度的分布和变化 [J]. 北京大学学报(自然科学版), 2010, 46(2): 185-191. [GUAN J X, LI C C. Spatial distributions and changes of aerosol optical depth over eastern and central China. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(2): 185-191. ]
[8] 彭威, 江洪, 肖钟湧, 等. 长三角地区土地覆盖对气溶胶光学厚度的影响 [J]. 环境科学与技术, 2014, 37(6): 177-182. [PENG W, JIANG H, XIAO Z Y, et al. Influence of land cover on the aerosol optical thickness over Yangtze River Delta. Environmental Science & Technology, 2014, 37(6): 177-182. ]
[9] 林俊, 刘卫, 李燕, 等. 大气气溶胶粒径分布特征与气象条件的相关性分析 [J]. 气象与环境学报, 2009, 25(1): 1-5. [LIN J, LIU W, LI Y, et al. Relationship between meteorological conditions and particle size distribution of atmospheric aerosols. Journal of Meteorologyand Environment, 2009, 25(1): 1-5. ]
[10] 韩道文, 刘文清, 张玉钧, 等. 温度和相对湿度对气溶胶质量浓度垂直分布的影响 [J]. 中国科学院研究生院学报, 2007, 24(5): 619-624. [HAN D W, LIU W Q, ZHANG Y J, et al. Influence of temperature and relative humidity upon aerosol mass concentrations vertical distributions. Journal of the Graduate School of the Chinese Academy of Sciences, 2007, 24(5): 619-624. ]
[11] 梁英杰, 杨武年, 李霜林. 基于ArcGIS的四川省气温空间插值分析 [J]. 测绘, 2012, 35(3): 105-107. [LIANG Y J, YANG W N, LI S L. Spatial interpolation analysis on temperature of Sichuan Province based on ArcGIS. Surveying and Mapping, 2012, 35(3): 105-107. ]
[12] 刘普幸, 卓玛兰草. 甘肃省1960—2008年潜在蒸散量时空变化及其影响因子 [J]. 自然资源学报, 2012, 27(9): 1561-1571.
[13] 张露, 杨永国, 姚松均. 基于ArcGIS的GDP空间插值方法比较分析 [J]. 科技致富向导, 2010(6): 31-32. [ZHANG L, YANG Y G, YAO S J. Comparative analysis of spatial interpolation method of GDP based on ArcGIS. Guide of Sci-tech Magazine, 2010(6): 31-32. ]
[14] 杨华安, 但尚铭. 四川盆地冬季风速、降水量与大气污染浓度分析 [J]. 四川气象, 1995, 15(3): 28-30. [YANG H A, DAN S M. The analysis of wind speed, precipitation and atmospheric pollution during the winter on Sichuan Basin. Journal of Sichuan Meteorology, 1995, 15(3): 28-30. ]
[15] 四川省统计局. 四川统计年鉴2014 [M]. 北京: 中国统计出版社, 2014: 1-35. [Sichuan Provincial Bureau of Statistics. Sichuan Statistical Yearbook. Beijing: China statistics press, 2014: 1-35. ]
[16] 周自江, 朱燕君, 姚志国, 等. 四川盆地区域性浓雾序列及其年际和年代际变化 [J]. 应用气象学报, 2006, 17(5): 567-573. [ZHOU Z J, ZHU Y J, YAO Z G, et al. Regional dense fog time sequence with its annual and decadal variation in the Sichuan Basin. Journal of Applied Meteorological Science, 2006, 17(5): 567-573. ]
[17] 李成才, 毛节泰, 刘启汉. 用MODIS遥感资料分析四川盆地气溶胶光学厚度时空分布特征 [J]. 应用气象学报, 2003, 14(1): 3-6. [LI C C, MAO J T, LIU Q H. Characteristics of aerosol optical depth distributions over Sichuan Basin derived from MODIS data. Journal of Applied Meteorological Science, 2003, 14(1): 3-6. ]
[18] 张顺谦, 马振峰. 1961—2009年四川极端强降水变化趋势与周期性分析 [J]. 自然资源学报, 2011, 26(11): 1918-1929. [ZHANG S Q, MA Z F. Change tendency and cyclicity analysis of extreme precipitation over Sichuan Province during 1961-2009. Journal of Natural Resources, 2011, 26(11): 1918-1929. ]