资源评价

人工油松林不同生长阶段深层土壤有机碳和活性碳的差异及其影响因素

展开
  • 1. 西北农林科技大学水土保持研究所,陕西 杨凌 712100;
    2. 中国科学院、水利部水土保持研究所,陕西 杨凌 712100
邱甜甜(1990- ),女,陕西省西安市人,硕士研究生,主要研究方向为植被恢复的生态效应。E-mail:1119604972@qq.com

收稿日期: 2015-08-25

  修回日期: 2016-01-11

  网络出版日期: 2016-08-20

基金资助

国家自然科学基金资助项目(41371508); 陕西省自然科学基础研究计划重点项目(2013JZ006); 西北农林科技大学基本科研业务费专项(ZD2013021)

Changes of Organic Carbon and Readily Oxidizable Carbon in Deep Soil at Different Developmental Stages of Artificial Pinus tabulaeformis Plantation and the Impact Factors

Expand
  • 1. Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China;
    2. Institute of Soil and Water Conservation, CAS and Ministry of Water Resource, Yangling 712100, China

Received date: 2015-08-25

  Revised date: 2016-01-11

  Online published: 2016-08-20

Supported by

National Natural Science Foundation of China, No.41371508; Natural Science Basic Research Key Project of Shaanxi Province, China, No.2013JZ006; Special Funds of the Basic Scientific Research Project of NWSUAF, China, No.ZD2013021

摘要

研究深层土壤碳库动态对了解陆地生态系统深层碳汇潜力、应对全球CO2升高具有重要意义。论文以黄土丘陵区人工油松林为研究对象,以撂荒地为参照,分析了不同生长阶段的人工油松林地0~200 cm土层土壤有机碳(soil organic carbon,SOC)和活性有机碳(readily oxidizable carbon,ROC)动态变化特征及其影响因素。结果表明:在0~200 cm剖面上,不同生长阶段油松林SOC含量及储量较撂荒地显著提高。浅层(0~100 cm)SOC平均含量,成熟林为撂荒地的2.03倍,提高最大;其次是中龄林,为1.85倍;最后是幼龄林,为1.59倍。深层(100~200 cm)SOC平均含量,幼龄林、中龄林和成熟林分别较撂荒地提高了1.43、1.38和1.36倍。各生长阶段油松林浅层和深层SOC储量分别占0~200 cm SOC储量的61.0%~69.8%和30.2%~39.0%,不同生长阶段间浅层SOC储量差异显著,但深层SOC储量差异不大。浅层ROC储量,幼龄林、中龄林和成熟林依次提高了54.8%、82.0%和91.6%;深层ROC储量依次提高了32.4%、40.9%和58.1%,且深层储量占0~200 cm土层的31.2%~33.3%。不仅浅层SOC和ROC含量受多个因素的影响,而且深层ROC含量也与油松高度、根系生物量以及枯落物厚度、干重呈极显著正相关。因此,人工林建设不仅显著提高浅层SOC和ROC含量,而且对深层土壤的固碳能力有一定改善。

本文引用格式

邱甜甜, 刘国彬, 王国梁, 孙利鹏, 姚旭 . 人工油松林不同生长阶段深层土壤有机碳和活性碳的差异及其影响因素[J]. 自然资源学报, 2016 , 31(8) : 1399 -1409 . DOI: 10.11849/zrzyxb.20150917

Abstract

It is not clear how plantation affect the soil organic carbon (SOC) in deep soil for terrestrial ecosystem. Based on space for time method, we studied the effect of Pinus tabulaeformis plantations at three developmental stages (young forest, middle age forest and mature forest) on the soil organic carbon (SOC) and soil readily oxidizable carbon (ROC) in 0-200 cm soil profile. The results showed that SOC content and storage significantly increased in soils with different developmental stages of Pinus tabulaeformis plantation compared with abandoned cropland in 0-200 cm profile. In the 0-100 cm soil layer, average SOC content of mature forest, middle age forest and young forest were 2.03, 1.85 and 1.59 times more than that in abandoned cropland, respectively. SOC storage in shallow and deep soil layers contributed 61.0%-69.8% and 30.2%-39.0% to total SOC storage in the whole profile (0-200 cm) at all of the investigated developmental stages. SOC storage in shallow soil layer varied significantly among different developmental stages, however, no obvious difference of SOC storage in deep soil layer was observed at all developmental stages. Compared to that in abandoned cropland, the ROC storage in soils of young forest, middle age forest and mature forest increased 54.8%, 82.0% and 91.6% in shallow soil layer and 32.4%, 40.9% and 58.1% in deep soil layer, respectively. ROC storage in deep soil layer contributed 31.2%-33.3% to total ROC storage in the whole profile (0-200 cm) at all developmental stages. SOC and ROC content in shallow soil layer were influenced by a number of factors, furthermore, ROC content in deep soil showed significant correlations with the plant height, root biomass, litter thickness and litter biomass. In conclusion, construction of artificial forest may significantly improve the soil carbon pool in both shallow and deep soil profiles.

参考文献

[1] NAIR P K R, NAIR V D, KUMAR B M, et al. Soil carbon sequestration in tropical agroforestry systems: A feasibility appraisal [J]. Environmental Science & Policy, 2009, 12(8): 1099-1111.
[2] MISHRA U, USSIRI D A N, LAL R. Tillage effects on soil organic carbon storage and dynamics in Corn Belt of Ohio USA [J]. Soil and Tillage Research, 2010, 107(2): 88-96.
[3] BLAIR G J, ROD D B L, LEANNE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466.
[4] BIEDERBECK V O, JANZEN H H, CAMPBELL C A, et al. Labile soil organic matter as influenced by cropping practices in an arid environment [J]. Soil Biology and Biochemistry, 1994, 26(12): 1647-1656.
[5] WHITBREAD A M, LEFROY R, BLAIR G. A survey of the impact of cropping on soil physical and chemical properties in northwestern New South Wales [J]. Soil Research, 1998, 36(4): 669-681.
[6] 彭文英, 张科利, 李双才. 黄土高原退耕还林(草)紧迫性地域分级论证 [J]. 自然资源学报, 2002, 17(4): 438-443.

[7] 赖亚飞, 朱清科. 黄土高原丘陵沟壑区退耕还林(草)工程实施综合效益评价——以陕西省吴起县为例 [J]. 西北林学院学报, 2009, 24(3): 219-223.

[8] NIU X, DUIKER S W. Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern US [J]. Forest Ecology and Management, 2006, 223(1/3): 415-427.
[9] LAL R. Forest soils and carbon sequestration [J]. Forest Ecology and Management, 2005, 220(1/3): 242-258.
[10] 薛萐, 刘国彬, 潘彦平, 等. 黄土丘陵区人工刺槐林土壤活性有机碳与碳库管理指数演变 [J]. 中国农业科学, 2009, 42(4): 1458-1464.

[11] 佟小刚, 韩新辉, 杨改河, 等. 碳库管理指数对退耕还林土壤有机碳库变化的指示作用 [J]. 中国环境科学, 2013, 33(3): 466-473.

[12] 王春梅, 刘艳红, 邵彬, 等. 量化退耕还林后土壤碳变化 [J]. 北京林业大学学报, 2007, 29(3): 112-119.

[13] VIEIRA F C B, BAYER C, ZANATTA J A, et al. Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems [J]. Soil and Tillage Research, 2007, 96(1/2): 195-204.
[14] 周莉, 李保国, 周广胜. 土壤有机碳的主导影响因子及其研究进展 [J]. 地球科学进展, 2005, 20(1): 99-105.

[15] 唐克丽, 郑粉莉, 张科利, 等. 子午岭林区土壤侵蚀与生态环境关系的研究内容和方法 [J]. 中国科学院水利部西北水土保持研究所集刊(土壤侵蚀与生态环境演变研究论文集), 1993(1): 3-10.

[16] 袁可能. 土壤有机矿质复合体研究 Ⅰ.土壤有机矿质复合体中腐殖质氧化稳定性的初步研究 [J]. 土壤学报, 1963, 11(3): 286-293.

[17] 肖瑜. 陕西省不同气候区域油松人工林生物量和生产力的比较研究 [J]. 植物生态学与地植物学学报, 1990, 14(3): 237-246.

[18] 许文强, 陈曦, 罗格平, 等. 干旱区三工河流域土壤有机碳储量及空间分布特征 [J]. 自然资源学报, 2009, 24(10): 1740-1747.

[19] 邹俊亮, 郭胜利, 李泽, 等. 小流域土壤有机碳的分布和积累及土壤水分的影响 [J]. 自然资源学报, 2012, 27(3): 430-439.

[20] 解宪丽, 孙波, 周慧珍, 等. 不同植被下中国土壤有机碳的储量与影响因子 [J]. 土壤学报, 2004, 41(5): 687-699.

[21] WANG Z Q, GUO S L, SUN Q Q, et al. Soil organic carbon sequestration potential of artificial and natural vegetation in the hilly regions of Loess Plateau [J]. Ecological Engineering, 2015, 82: 547-554.
[22] 王征, 刘国彬, 许明祥. 黄土丘陵区植被恢复对深层土壤有机碳的影响 [J]. 生态学报, 2010, 30(14): 3947-3952.

[23] LI Y Y, SHAO M A, ZHENG J Y, et al. Spatial-temporal changes of soil organic carbon during vegetation recovery at Ziwuling China [J]. Pedosphere, 2005, 15(5): 601-610.
[24] WANG C, YANG J, ZHANG Q. Soil respiration in six temperate forests in China [J]. Global Change Biology, 2006, 12(11): 2103-2114.
[25] HUANG M, JI J, LI K, et al. The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of South China [J]. Tellus B, 2007, 59(3): 439-448.
[26] ROMANYÀ J, CORTINA J, FALLOON P, et al. Modelling changes in soil organic matter after planting fast-growing Pinus radiata on Mediterranean agricultural soils [J]. European Journal of Soil Science, 2000, 51(4): 627-641.
[27] GARTEN JR C T. Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA [J]. Biomass and Bioenergy, 2002, 23(2): 93-102.
[28] 刘梦云, 常庆瑞, 齐雁冰, 等. 黄土台塬不同土地利用土壤有机碳与颗粒有机碳 [J]. 自然资源学报, 2010, 25(2): 218-226.

[29] 梁爱华, 韩新辉, 赵发珠, 等. 黄土高原丘陵区退耕还林地土壤碳氮库的动态变化 [J]. 农业工程学报, 2014, 30(23): 148-157.

[30] 郭胜利, 马玉红, 车升国, 等. 黄土区人工与天然植被对凋落物量和土壤有机碳变化的影响 [J]. 林业科学, 2009, 45(10): 14-18.

[31] 刘正刚, 裴柏洋, 王宪帅. 岷江上游干旱河谷不同土地利用类型的土壤有机碳和易氧化态碳特征 [J]. 水土保持研究, 2011, 18(3): 24-27.

[32] 苏静, 赵世伟, 马继东, 等. 宁南黄土丘陵区不同人工植被对土壤碳库的影响 [J]. 水土保持研究, 2005, 12(3): 50-52.

[33] WANG Y F, FU B J, LÜ Y H, et al. Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau, China [J]. Quaternary Research, 2010, 73(1): 70-76.
[34] JOBBAGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecological Applications, 2000, 10(2): 423-436.
[35] 李裕元, 邵明安, 陈洪松, 等. 水蚀风蚀交错带植被恢复对土壤物理性质的影响 [J]. 生态学报, 2010, 30(16): 4306-4316.

[36] 任秀娥, 童成立, 孙中林, 等. 温度对不同粘粒含量稻田土壤有机碳矿化的影响 [J]. 应用生态学报, 2007, 18(10): 2245-2250.

[37] 王建林, 欧阳华, 王忠红, 等. 青藏高原高寒草原土壤活性有机碳的分布特征 [J]. 地理学报, 2009, 64(7): 771-781.

[38] LEIFELD J, K GEL-KNABNER I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use [J]. Geoderma, 2005, 124(1/2): 143-155.
[39] 韩新辉, 佟小刚, 杨改河, 等. 黄土丘陵区不同退耕还林地土壤有机碳库差异分析 [J]. 农业工程学报, 2012, 28(12): 223-229.
文章导航

/