资源评价

西藏地区水电开发的低碳效益评价

展开
  • 环境保护部南京环境科学研究所,南京 210042
赵卫(1981- ),男,山东枣庄人,博士,副研究员,主要从事气候变化生态响应与应对研究。E-mail:zhaowei-china@163.com *通信作者简介:沈渭寿(1957- ),男,甘肃景泰人,博士,研究员,主要从事生态保护与气候变化响应研究。E-mail:shenweishou@163.com

收稿日期: 2015-08-27

  修回日期: 2016-03-11

  网络出版日期: 2016-08-20

基金资助

国家环保公益性行业科研专项(201209032); 中央级公益性科研院所基本科研业务专项(2013012)

Assessment on Low-carbon Effects of Hydropower Development in Tibet, China

Expand
  • Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China

Received date: 2015-08-27

  Revised date: 2016-03-11

  Online published: 2016-08-20

Supported by

State Environmental Protection Commonweal Special Program of China, No.201209032; Basic Research Foundation of National Commonweal Research Institute, No.2013012

摘要

论文针对西藏水电开发及外送在我国优化能源资源配置、调整能源结构和控制CO2排放中的重要地位,综合考虑受电区火力发电的供电煤耗、CO2排放水平及其动态变化,开展西藏地区水电开发的化石燃料替代、CO2减排等低碳效益评价。结果表明:1)2006—2012年西藏水电开发的化石燃料替代效应和CO2减排效应变化具有明显的波动性;2)不同技术水平下西藏水电开发的化石燃料替代效应存在明显差异,华中电网技术水平下西藏水电开发的化石燃料替代量最大,西北、西藏电网技术水平下次之,全国电网技术水平下最小;3)不同排放水平下西藏水电开发的CO2减排效应也存在明显差异,西藏电网排放水平下西藏水电开发的CO2减排量最大,西北、华中电网排放水平下次之;4)西藏水电未来开发的化石燃料替代潜力和CO2减排潜力突出,2030年西藏水电开发的化石燃料替代量超过2012年西北电网5省区火电燃料消耗总量的75%;与其他排放水平相比,2030年华中电网排放水平下西藏水电开发的CO2减排量相对较小,但仍然超过2013年阿根廷、巴基斯坦、越南等国能源消费的CO2排放量。因此,西藏水电开发及外送对于我国推动能源结构低碳化、实现2030年应对气候变化国家自主行动目标等具有重要意义。

本文引用格式

赵卫, 沈渭寿, 李海东 . 西藏地区水电开发的低碳效益评价[J]. 自然资源学报, 2016 , 31(8) : 1388 -1398 . DOI: 10.11849/zrzyxb.20150928

Abstract

Hydropower development and outward transmission in Tibet play a vital role in optimization of energy resource configuration and reduction of CO2 emission in China. The low-carbon effects of hydropower development in Tibet were assessed, and fossil fuel consumption reduction and CO2 reduction achieved by hydropower development in Tibet were analyzed based on net coal consumption rate, CO2 emission coefficient and its dynamic change of fossil-fired power generation in different power grids. The results show that: 1) The fossil fuel consumption reduction and the CO2 reduction achieved by hydropower development in Tibet have significant variations. During the period from 2006 to 2012, the fossil fuel consumption reduction and the CO2 reduction achieved by hydropower development in Tibet were the most in 2011. 2) The fossil fuel consumption reductions achieved by hydropower development in Tibet were different significantly with different net coal consumption rates of fossil-fired power generation. The fossil fuel consumption reduction achieved by hydropower development according to net coal consumption rate of fossil-fired power generation in Central China power grid (CCPG) was the most, the fossil fuel consumption reduction according to net coal consumption rate of fossil-fired power generation in Northwest China power grid (NCPG) and Tibet power grid (TPG) took the second and the third place respectively, and the fossil fuel consumption reduction according to net coal consumption rate of fossil-fired power generation in national power grid (NPG) was the least. 3) According to different CO2 emission levels of fossil-fired power generation, the CO2 reductions achieved by hydropower development in Tibet were also different. Among them, the CO2 reduction achieved by hydropower development according to CO2 emission level of fossil-fired power generation in TPG was the most, the CO2 reduction of hydropower development according to CO2 emission level of fossil-fired power generation in NCPG and CCPG took the second and the third place respectively. 4) The fossil fuel consumption reduction potential and the CO2 reduction potential achieved by hydropower development in Tibet were outstanding. According to net coal consumption rates of fossil-fired power generation in NCPG, CCPG, TPG and NPG, the fossil fuel consumption reductions achieved by hydropower development in Tibet in 2030 would be more than 75% of total fossil fuel consumption (1.379×108 tec) of fossil-fired power generation in NCPG in 2012. Among the CO2 reduction potentials according to different CO2 emission levels, the CO2 reduction achieved by hydropower development in Tibet according to CO2 emission level of fossil-fired power generation in CCPG would be the least, but more than the carbon dioxide emissions of fossil fuel consumption in Argentina, Pakistan, Vietnam and other countries in 2013.

参考文献

[1] 张超然, 陈先明. 长江上游流域水电开发在我国低碳经济中的地位 [J]. 水力发电学报, 2011, 30(5):1-4, 34.

[2] 秦小华, 李志威, 王亮. 我国水电的碳减排累积效应与未来预期 [J]. 中国农村水利水电, 2013(1): 140-143.

[3] 小巴桑, 戴林军. 浅析西藏水电开发对区域产业结构调整的作用 [J]. 水利经济, 2011, 29(4): 25-27, 54.

[4] 刘瑞丰, 陈天恩, 张浩, 等. 青藏联网后电力交易有关问题探讨 [J]. 电网与清洁能源, 2011, 27(12): 53-56.

[5] 韩冬, 方红卫, 严秉忠, 等. 2013年中国水电发展现状 [J]. 水力发电学报, 2014, 33(5): 1-5.

[6] 李飏. “西电东送”环境减排效应研究 [J]. 中国人口·资源与环境, 2010, 20(9): 36-41.

[7] LU C X, MA C, ZHANG Y S, et al. Ecological footprint of hydropower development in China and the associated reductions of greenhouse gas emission [J]. Journal of Resources and Ecology, 2013, 4(4): 369-373.
[8] 吴炳方, 陈永柏, 曾源, 等. 三峡水库发电和航运的碳减排效果评价 [J]. 长江流域资源与环境, 2011, 20(3): 257-261.

[9] 西藏年鉴编辑委员会. 西藏年鉴2009 [M]. 拉萨: 西藏人民出版社, 2010: 10-13.

[10] 中国电力年鉴编辑委员会. 2013中国电力年鉴 [M]. 北京: 中国电力出版社, 2013: 619.

[11] 鑫明. 从2020年开始我国水电建设将转战西藏 [N]. 中国电力报, 2006-11-11.

[12] 陈爱东, 姚凌云, 唐静. 生态安全屏障建设背景下西藏可再生能源发展路径探讨 [J]. 生态经济, 2013(7): 128-132.

[13] 尼玛旦增, 普片, 德吉卓嘎. 西藏水能资源开发的任务和存在的问题及其对策分析 [J]. 西藏科技, 2012(2): 32-35.

[14] 梁亚娟, 樊京春. 可再生能源发电技术温室气体减排效益分析 [J]. 可再生能源, 2004(1): 23-25.

[15] 吴世勇, 申满斌, 陈求稳. 清洁发展机制 (CDM) 与我国水电开发 [J]. 水力发电学报, 2008, 27(6): 53-55.

[16] 隋欣, 廖文根. 中国水电温室气体减排作用分析 [J]. 中国水利水电科学研究院学报, 2010, 8(2): 133-137.

[17] 涂华, 刘翠杰. 标准煤二氧化碳排放的计算 [J]. 煤质技术, 2014(2): 57-60.

[18] 任东明, 张庆分. 我国藏东南水能资源的开发潜力与作用分析 [J]. 中国能源, 2010, 32(12): 10-13, 28.

[19] 杨勇平, 杨志平, 徐钢, 等. 中国火力发电能耗状况及展望 [J]. 中国电机工程学报, 2013, 33(23): 1-11.

[20] 王伟光, 郑国光, 潘家华, 等. 应对气候变化报告 (2014) 科学认知与政治争锋 [M]. 北京: 社会科学文献出版社, 2014: 377-380.
文章导航

/