资源评价

湘江流域岳麓山周边地区不同水体中氢氧稳定同位素特征及相互关系

展开
  • 湖南师范大学资源与环境科学学院,长沙 410081
姚天次(1992- ),男,湖南岳阳人,硕士研究生,专业方向为稳定同位素地球化学。E-mail:tianciyao2015@163.com *通信章新平(1956- ),男,湖南长沙人,教授,博士,主要从事气候变化的研究。E-mail:zxp@hunnu.edu.cn

收稿日期: 2015-07-27

  修回日期: 2015-11-19

  网络出版日期: 2016-07-20

基金资助

国家自然科学基金项目(41571021, 41171035); 湖南省重点学科建设项目(2016001); 湖南重特大干旱机理研究项目(2015001)

Characteristics of the Stable Isotopes in Different Water Bodies and Their Relationships in Surrounding Areas of Yuelu Mountain in the Xiangjiang River Basin

Expand
  • College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, China

Received date: 2015-07-27

  Revised date: 2015-11-19

  Online published: 2016-07-20

Supported by

National Natural Science Foundation of China, No.41571021 and 41171035 ;Construct Program of the Key Discipline in Hunan Province, No.2016001 ;The Research Project on the Mechanism of Extremely Severe Drought in Hunan Province, No.2015001

摘要

不同水体中稳定同位素的差异性组成对认识区域水文过程,如水体的补给机制、不同水体间的相互作用具有重要意义。论文基于2010—2013年湘江流域岳麓山周边地区降水、地表水、浅层土壤水和地下水中δD和δ18O的逐日数据及相关气象资料,分析了不同水体中稳定同位素的组成,揭示了不同水稳定同位素间的相互作用关系。结果表明:地表水、浅层土壤水和地下水中δD和δ18O对日降水中δD和δ18O的响应存在时滞,地表水和浅层土壤水的滞后时间较短,地下水的滞后时间较长;在天气尺度下,降水中δD和δ18O存在很好的线性关系,二者的相关系数达0.98;地表水、浅层土壤水和地下水中δD和δ18O的线性相关系数分别为0.95、0.90和0.90,均超过0.001的信度;在δD-δ18O关系中,地表水水线(SWL)、浅层土壤水水线(SSWL)和地下水水线(GWL)的斜率及截距都小于长沙大气水线(LMWL),表明降水是区域地表水、浅层土壤水和地下水的主要补给水源,且在补给过程中,存在一定程度的蒸发,同时与其他水体存在混合交换作用;在季节尺度下,同一水体的水线斜率与截距具有正比关系,即斜率越大,截距越大;但LMWL斜率和截距的关系存在季节和年际的差异;对比同一类水线旱雨季的斜率,仅有LMWL的斜率旱季小于雨季,反映出旱季干燥的大气条件下,降落雨滴云下二次蒸发强烈的特点。

本文引用格式

姚天次, 章新平, 李广, 黄煌, 吴华武, 黄一民, 张婉君 . 湘江流域岳麓山周边地区不同水体中氢氧稳定同位素特征及相互关系[J]. 自然资源学报, 2016 , 31(7) : 1198 -1210 . DOI: 10.11849/zrzyxb.20150810

Abstract

The stable isotopes in different water bodies are of great significance to the study of hydrological processes, such as recharge mechanism and the interaction among different waters. In order to characterize the isotopic composition and reveal the interrelationships among the stable isotopes in different water bodies in Changsha, the precipitation, surface water, shallow soil water and groundwater samples were collected in surrounding areas of Yuelu Mountain from 2010 to 2013. Meanwhile, auxiliary variables (time and amount of air temperature and precipitation) were also measured. These measurements indicated significant time lag effect of the responses of δD and δ18O in the surface water, shallow soil water and groundwater to those of the daily precipitation showed. The lag time of surface water and shallow soil water to the precipitation is shorter, but the groundwater is longer. There was a remarkable linear relationship between δD and δ18O of precipitation at the synoptic scale, with a correlation coefficient 0.98; and the correlation coefficients between δD and δ18O in the surface water, shallow soil water and groundwater is 0.95, 0.90 and 0.90 respectively. In the δD-δ18O relation pattern, the slopes and the intercepts of the Surface Water Line (SWL), Shallow Soil Water Line (SSWL) and Groundwater Water Line (GWL) are smaller than those of the Local Meteoric Water Line (LMWL), suggesting that the precipitation is the primarily sources of other water bodies, and it has experienced considerable degree of evaporation and mixed with other water bodies. At the seasonal scale, notable positive correlations between the slope and the intercept of the same water-line were observed, however we also found the correlations between the slope and the intercept of LMWL failed to obey the pattern. The slope of LMWL during the dry season is smaller than in the rainy season, which revealed that the raindrops had undergone strong secondary evaporation during their descending from the cloud.

参考文献

[1] GAT J R, AIREY P L. Stable water isotopes in the atmosphere/biosphere/lithosphere interface: Scaling-up from the local to continental scale, under humid and dry conditions [J]. Global and Planetary Change, 2006, 51(1): 25-33.
[2] UEMURA R, YONEZAWA N, YOSHIMURA K, et al. Factors controlling isotopic composition of precipitation on Okinawa island, Japan: Implications for paleoclimate reconstruction in the East Asian Monsoon region [J]. Journal of Hydrology, 2012, 475: 314-322.
[3] 田立德, 马凌龙, 余武生, 等. 青藏高原东部玉树降水中稳定同位素季节变化与水汽输送 [J]. 中国科学D辑, 2008, 38(8): 986-992.
[4] 冯芳, 李忠勤, 金爽, 等. 天山乌鲁木齐河流域山区降水δ 18 O和δD特征及水汽来源分析 [J]. 水科学进展, 2013, 24(5): 634-641.
[5] 郭小燕, 冯起, 李宗省. 敦煌盆地降水稳定同位素特征及水汽来源 [J]. 中国沙漠, 2015, 35(3): 715-723.
[6] 柳鉴容, 宋献方, 袁国富, 等. 我国南部夏季季风降水水汽来源的稳定同位素证据 [J]. 自然资源学报, 2007, 22(6): 1004-1012.
[7] 李小飞, 张明军, 马潜, 等. 我国东北地区大气降水稳定同位素特征及其水汽来源 [J]. 环境科学, 2012, 33(9): 2924-2931.
[8] CHEN J S, WANG C Y, TAN H B, et al. New lakes in the Taklamakan Desert [J]. Geophysical Research Letters, 2012, 39(22), doi:10.1029/2012GL 053985.
[9] EDIRISINGHE E, PITAWALA H, DHARMAGUNAWARDHANE H A, et al. Isotopic variations in natural water and groundwater recharge conditions in the Kalaoya basin, Sri Lanka [J]. Ceylon Journal of Science (Physical Sciences), 2014, 18: 09-16.
[10] NIE Y P, CHEN H S, WANG K L, et al. Water source utilization by woody plants growing on dolomite outcrops and nearby soils during dry seasons in karst region of Southwest China [J]. Journal of Hydrology, 2012, 420: 264-274.
[11] RANGARAJAN R, GHOSH P. Tracing the source of bottled water using stable isotope techniques [J]. Rapid Communications in Mass Spectrometry, 2011, 25(21): 3323-3330.
[12] REIS C M, TANCREDI A C F N S, MATSUI E, et al. Characterization of waters in the region of Marajó through concentrations of 18 O and D [J]. Acta Amazonica, 1977, 7: 209-222.
[13] MCKENNA S A, INGRAHAM N L, JACOBSON R L, et al. A stable isotope study of bank storage mechanisms in the Truckee River Basin [J]. Journal of Hydrology, 1992, 134(1): 203-219.
[14] AYENEW T, KEBEDE S, ALEMYAHU T. Environmental isotopes and hydrochemical study applied to surface water and groundwater interaction in the Awash River Basin [J]. Hydrological Processes, 2008, 22(10): 1548-1563.
[15] NAKAMURA T, OSAKA K, NISHIDA K, et al. Groundwater recharges and interaction between groundwater and river water in Kathmandu valley, Nepal [C]//AGU Fall Meeting Abstracts. 2010: 1125.
[16] PENG T R, HUANG C C, WANG C H, et al. Using oxygen, hydrogen and tritium isotopes to assess pond water’s contribution to groundwater and local precipitation in the pediment tableland areas of northwestern Taiwan [J]. Journal of Hydrology, 2012, 450: 105-116.
[17] XU Y Y, YAN B X, LUAN Z L, et al. Application of stable isotope tracing technologies in identification of transformation among waters in Sanjiang Plain, Northeast China [J]. Chinese Geographical Science, 2013, 23(4): 435-444.
[18] 吴华武, 章新平, 孙广禄, 等. 湖南长沙地区大气降水中稳定同位素特征变化 [J]. 长江流域资源与环境, 2012, 21(5): 540-546.
[19] 吴华武, 章新平, 关华德, 等. 不同水汽来源对湖南长沙地区降水中δD和δ 18 O的影响 [J]. 自然资源学报, 2012, 27(8): 1404-1414.
[20] 黄一民, 章新平, 唐方雨, 等. 长沙大气降水中稳定同位素变化及过量氘指示水汽来源 [J]. 自然资源学报, 2013, 28(11): 1945-1953.
[21] WU H W, ZHANG X P, LI X Y, et al. Seasonal variations of deuterium and oxygen-18 isotopes and their response to moisture source for precipitation events in the subtropical monsoon region [J]. Hydrological Processes, 2015, 29(1): 90-102.
[22] 黄一民, 章新平, 孙葭. 长沙大气水线及与局地气象要素的关系 [J]. 长江流域资源与环境, 2014, 23(10): 1412-1417.
[23] 吴华武, 章新平, 李小雁, 等. 湘江流域中下游长沙地区不同水体中δ 18 O、δD的变化 [J]. 地理科学, 2014, 34(4): 488-495.
[24] 李广, 章新平, 张立峰, 等. 长沙地区不同水体稳定同位素特征及其水循环指示意义 [J]. 环境科学, 2015, 36(6): 2094-2101.
[25] 田立德, 姚檀栋, 沈永平, 等. 青藏高原那曲河流域降水及河流水体中氧稳定同位素研究 [J]. 水科学进展, 2002, 13(2): 206-210.
[26] 罗维均, 王世杰. 贵州凉风洞大气降水-土壤水-滴水的δ 18 O信号传递及其意义 [J]. 科学通报, 2008, 53(17): 2071-2076.
[27] 尹佃忠. 森林植被对地下水补给作用分析 [J]. 地下水, 2003, 25(1): 9-10.
[28] CRAIG H. Isotopic variations in meteoric water. Science, 1961, 133:1702-1703.
[29] 田立德, 姚檀栋, 孙维贞. 青藏高原南北降水中δD和δ 18 O关系及水汽循环 [J]. 中国科学D辑, 2001, 31(3): 214-220.
[30] 宋献方, 刘相超, 夏军, 等. 基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究 [J]. 中国科学D辑, 2007, 37(1): 102-110.
[31] 宋献方, 李发东, 于静洁, 等. 基于氢氧同位素与水化学的潮白河流域地下水水循环特征 [J]. 地理研究 ,2007, 26(1): 11-21.
[32] 侯典炯, 秦翔, 吴锦奎, 等. 小昌马河流域地表水地下水同位素与水化学特征及转化关系 [J]. 冰川冻土, 2012, 34(3): 698-705.
[33] 高志发. 西北地区大气降水地表水及地下水同位素组成特征探讨 [J]. 甘肃地质学报, 1993, 2(2): 94-101.
[34] LIU J R, SONG X F, YUAN G F, et al. Stable isotopic compositions of precipitation in China [J]. Tellus B, 2014, 66, 22567, doi:10.3402/tellusb.v66.22567.
[35] 薛积彬, 钟巍, 赵引娟. 广州大气降水中δ 18 O与气象要素及季风活动之间的关系 [J]. 冰川冻土, 2008, 30(5): 761-768.
[36] 王涛, 张洁茹, 刘笑, 等. 南京大气降水氧同位素变化及水汽来源分析 [J]. 水文, 2013, 33(4): 25-31.
[37] 武亚遵, 万军伟, 林云. 湖北宜昌西陵峡地区大气降雨氢氧同位素特征分析 [J]. 地质科技情报, 2011, 30(3): 93-97.
[38] 王永森, 马振民, 徐征和. 基于瑞利分馏模式的水体蒸发线斜率模型 [J]. 水科学进展, 2011, 22(6): 795-800.
[39] 章新平, 刘晶淼, 中尾正义, 等. 我国西南地区降水中过量氘指示水汽来源 [J]. 冰川冻土, 2009, 31(4): 613-619.
文章导航

/