河流周边的人类活动干扰使得河岸带的植被类型和结构发生了巨大变化。研究选取了北京市温榆河的3个类型河岸带植被结构,从河漫滩到河道上依次为:(I)杨树林-农田、(II)火炬树林-荒草、(III)农田-荒草。通过土壤采样分析和对比研究,发现河岸带的植被格局可以显著影响土壤养分的空间分布特征和流失风险。从河漫滩到河道的方向上,河岸带植被组合I的土壤全氮、全磷、有效氮、有效磷和有机质含量均呈现降低的趋势,而土壤容重则逐渐增加。对于植被结构类型II,土壤的全氮、有效氮和有机质呈现出波动的变化;而土壤的全磷和有效磷都呈现比较平缓的变化趋势。对于植被组合III,土壤养分含量均呈现增加的趋势,土壤容重呈现降低的趋势。河岸植被模式III的下坡位荒草区域的土壤养分和有机质含量都要显著高于其上坡位的农田区域,但农田区域的土壤容重则大于荒草区域。植被结构的异质性还可以影响到河岸样带的土壤平均养分含量和容重大小。研究结果可以为退化河岸带的植被恢复和植被格局的优化设计提供参考。
The types and patterns of riparian vegetation have changed greatly due to human activities along the Wenyu River. Three riparian vegetation patterns from the upland to the river channel along Wenyu River were chosen as the focus of this study. These vegetation patterns are (I) Populus simonii forestland-Cropland, (II) Rhus typhina forestland-Grassland and (III) Cropland-Grassland, respectively. The distributions of soil nutrients along these vegetation patterns were observed and compared. Results show that the heterogeneity of riparian vegetation structure can significantly affect the distribution characteristics of soil nutrients and the risk of soil nutrients loss. From the upland toward the river channel, the contents of soil TN (total nitrogen), TP (total phosphorus), AN (available nitrogen), AP (available phosphorus), and the content of SOM (soil organic matter) exhibit the declining trend in riparian vegetation structure I, whereas the soil bulk density (BD) shows an increase trend. The contents of TN, AN, SOM in riparian vegetation structure II fluctuate, while the contents of TP and AP are relatively stable. Soil nutrients in riparian vegetation structure III show the increase trend from the upland toward the river channel, however, the soil BD decreases in the same direction. For the vegetation structure III, the grassland soil in the lower slope has more nutrients and OM but lower BD than the cropland soil in the upper slope. The riparian vegetation structure also can affect the average contents of soil nutrients in riparian transect. A scientific reference can be provided by this paper for optimization and restoration design of riparian vegetation.
[1] NAIMAN R J, DECAMPS H. The ecology of interfaces: riparian zones [J]. Annual Review Ecological Systematics, 1997, 28: 621-658.
[2] 邓红兵, 王青春, 王庆礼, 等. 河岸植被缓冲带与河岸带管理 [J]. 应用生态学报, 2001, 12(6): 951-954.
[3] 张建春, 彭补拙. 河岸带研究及其退化生态系统的恢复与重建 [J]. 生态学报, 2003, 23(1): 56-63.
[4] CORRELL D L. Principles of planning and establishment of buffer zones [J]. Ecological Engineering, 2005, 24: 433-439.
[5] 杨胜天, 王雪蕾, 刘昌明, 等. 岸边带生态系统研究进展 [J]. 环境科学学报, 2007, 27(6): 894-905.
[6] 郭二辉, 孙然好, 陈利顶. 河岸植被缓冲带主要生态服务功能研究的现状与展望 [J]. 生态学杂志, 2011, 30(8): 1830-1837.
[7] 吴睿珊, 章家恩, 梁开明, 等. 生态堤岸的构建设计及其生态服务功能评价探讨 [J]. 生态科学, 2014, 33(1): 173-181.
[8] 汤家喜, 孙丽娜, 孙铁珩, 等. 河岸缓冲带对氮磷的截留转化及其生态恢复研究进展 [J]. 生态环境学报, 2012, 21(8): 1514-1520.
[9] CABEZAS A, COMÍN F A. Carbon and nitrogen accretion in the topsoil of the middle Ebro River floodplains (NE Spain): Implications for their ecological restoration [J]. Ecological Engineering, 2010, 36(5): 640-652.
[10] KNOEPP J D, CLINTON B D. Riparian zones in southern Appalachian headwater catchments: Carbon and nitrogen responses to forest cutting [J]. Forest Ecology and Management, 2009, 258(10): 2282-2293.
[11] 王庆成, 崔东海, 王新宇, 等. 帽儿山地区不同类型河岸带土壤的反硝化效率 [J]. 应用生态学报, 2007, 18(12): 2681-2686.
[12] 陈刚亮, 李建华, 杨长明. 崇明岛不同土地利用类型河岸带土壤反硝化酶活性特征 [J]. 应用生态学报, 2013, 24(10): 2926-2932.
. Chinese Journal of Applied Ecology, 2013, 24(10): 2926-2932. ]
[13] 张灿强, 张彪, 杨艳刚, 等. 太湖上游西苕溪近岸森林土壤氮磷养分差异特征 [J]. 水土保持学报, 2011, 25(5): 53-58.
[14] 常超, 谢宗强, 熊高明, 等. 三峡水库蓄水对消落带土壤理化性质的影响 [J]. 自然资源学报, 2011, 26(7): 1236-1244.
[15] FU B J, CHEN L D, MA K M. The relationships between land use and soil conditions in the hilly area of the Loess Plateau in northern Shaanxi, China [J]. Catena, 2000, 39: 69-78.
[16] 杨一松, 王兆骞, 陈欣, 等. 南方红壤坡地不同利用模式的水土保持及生态效益研究 [J]. 水土保持学报, 2004, 18(5): 84-87.
[17] 邓瑞芬, 王百群, 刘普灵, 等. 黄土坡面不同土地利用方式对土壤有机碳流失的影响 [J]. 水土保持研究, 2011, 18(5): 104-107.
[18] 袁东海, 王兆骞, 陈欣, 等. 红壤小流域不同利用方式氮磷流失特征研究 [J]. 生态学报, 2003, 23(1): 188-198.
[19] 魏孝荣, 邵明安. 黄土高原沟壑区小流域坡地土壤养分分布特征 [J]. 生态学报, 2007, 27(2): 603-612.
[20] SHARPLEY A N, CHAPRA S C, WEDEPHOL R, et al. Managing agricultural phosphorus for protection of surface waters: Issues and options [J]. Journal of Environmental Quality, 1994, 23(3): 437-451.
[21] ZAIMES G Z, SCHULTZ R C, ISENHART T M. Total phosphorus concentrations and compaction in riparian areas under different riparian land-uses of Iowa [J]. Agriculture, Ecosystems and Environment, 2008, 127: 22-30.
[22] 鲍士旦. 土壤农化分析 [M]. 北京: 中国农业出版社, 2000: 25-97.
[23] 张丽萍, 张锐波, 陈兆云, 等. 城郊不同土地利用方式坡地土壤养分空间动态研究 [J]. 水土保持通报, 2007, 27(1): 39-46.
[24] 田均良. 侵蚀泥沙坡面沉积研究初报 [J]. 水土保持研究, 1997, 4(4): 57-63.
[25] THUROW T L, BLACKBURN W H, TAYLOR JR C A. Infiltration and interill erosion responses to selected livestock grazing strategies, Edwards Plateau, Texas [J]. Journal of Range Management, 1988, 41: 296-302.
[26] MARQUEZ C O, CAMBARDELLA C A, ISENHART T M, et al. Assessing soil quality in a riparian buffer by testing organic matter fractions in central Iowa, USA [J]. Agroforestry Systems, 1999, 44: 133-140.
[27] MURAGE E W, KARANJA N K, SMITHSON P C. Diagnostic indicators of soil quality in productive and non-productive smallholders’ fields of Kenya’ s Central Highlands [J]. Agriculture, Ecosystems and Environment, 2000, 79: 1-8.