资源生态

干旱区城市化对生态系统碳库的影响——以乌鲁木齐市为例

展开
  • 1. 中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,乌鲁木齐 830011;
    2. 中国科学院大学,北京 100049;
    3. 中国科学院地理科学与资源研究所,北京 100101
朱士华(1989- ),男,硕士,研究方向为生态模型、全球变化生态学。E-mail:zshcare@foxmail.com *通信艳燕(1986- ),女,博士,研究方向为城市生态学。E-mail:vvyaya@hotmail.com

收稿日期: 2015-07-03

  修回日期: 2015-11-16

  网络出版日期: 2016-07-20

基金资助

国家自然科学基金项目(31170347); 中国科学院知识创新工程重要方向项目(KZCX2-YW-T09); 中国科学院百人计划项目(Y174131001)

The Impact of Urbanization on Ecosystem Carbon Storage in Arid Area

Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, CAS, Urumqi 830011, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2015-07-03

  Revised date: 2015-11-16

  Online published: 2016-07-20

Supported by

National Natural Science Foundation of China, No.31170347; Knowledge Innovation Program of the Chinese Academy of Sciences, No.KZCX2-YW-T09; “Hundred Talents Program”of the Chinese Academy of Sciences, No.Y174131001

摘要

城市化是影响区域生态系统碳循环的主要原因,也是评估生态系统碳循环的最大不确定因素。论文利用1990与2010年Landsat TM数据,基于V-I-S城市土地覆被模型和决策树分类法,获得乌鲁木齐土地变化时空格局;结合野外实测数据和文献检索得到研究区不同土地覆被类型的土壤与植被碳密度,估算了城市土地变化对生态系统碳库的影响。结果表明:1)1990—2010年间,乌鲁木齐城市不透水地表(impervious surface areas, ISA)以中部南部内部填充与北部扩张的形式约增加62%,主要占用农田(27%)与荒漠(62%)。2)乌鲁木齐市生态系统碳库主体(95%)分布在土壤中,城市土地覆被变化导致约25%的碳库损失,由农田、裸土/残存荒漠以及城市绿地转变为ISA解释了68%的土壤有机碳和63%的植被碳损失量,其空间分布与ISA的扩张相一致。城市植被及其土壤具有较高的碳密度,合理的城市规划可以抵消部分因土地变化而损失的生态系统碳。

本文引用格式

朱士华, 艳燕, 胡云锋, 张弛 . 干旱区城市化对生态系统碳库的影响——以乌鲁木齐市为例[J]. 自然资源学报, 2016 , 31(7) : 1086 -1099 . DOI: 10.11849/zrzyxb.20150731

Abstract

Urbanization is one of the main factors that influence the regional ecosystem. However, the paucity of observation on the soil organic carbon (SOC) beneath urban impervious surface area (ISA) limits the estimation on the implication of urban land conversion in regional carbon cycle, especially in the arid regions. In this paper, urban land covers (water, ISA, greenspace, cropland, and bare ground, remnant desert) and land cover conversion of Urumqi, Xinjiang, China was estimated using the models of Vegetation-Impervious surface-Soil for urban land covers, linear spectral mixture analysis, and decision tree classifier based on Landsat TM/ETM of 1990 and 2010. The impact of urban land conversion on the ecosystem carbon storage was estimated based on the SOC and vegetation carbon density that obtained from the field observation and literatures. The dominant land conversion was the ISA expansion, which was tripled during 1990-2010, mostly sprawling in the north, and infilling in the southwestern Urumqi. The ISA expansion mainly occupied the bare soil/remnant desert (62%) and cropland (27%). It was found that more than 95% of urban ecosystem carbon stored in the soils, and 48% of which was in the soil under ISA. Land cover conversion during 1990-2010 resulted in a total of 25% carbon loss, in which converting of bare soil/remnant desert and cropland into ISA explained 68% of the total SOC loss and 63% of the total VEGC loss, whose spatial distribution was consistent with the spatial distribution of land conversion. Urban ecosystem carbon sequestration could be improved by intensive management and reasonable planning of the proportion between urban ISA and green space, which could make up for part of carbon loss caused by land conversion.

参考文献

[1] WATSON R T, NOBLE I R, BOLIN B, et al. Land Use, Land-Use Change, and Forestry [M]. Cambridge, United Kingdom: Cambridge University Press, 2000.
[2] KING A W, EMANUEL W R, WULLSCHLEGER S D, et al. In search of the missing carbon sink—A model of terrestrial biospheric response to land-use change and atmospheric CO 2 [J]. Tellus Series B—Chemical and Physical Meteorology, 1995, 47(4): 501-519.
[3] LEVY P E, FRIEND A D, WHITE A, et al. The influence of land use change on global-scale fluxes of carbon from terrestrial ecosystems [J]. Climatic Change, 2004, 67(2/3): 185-209.
[4] BAI X M. Realizing China’s urban dream [J]. Nature, 2014, 509(7501): 423-423.
[5] BENGSTON D N, POTTS R S, FAN D P, et al. An analysis of the public discourse about urban sprawl in the united states: Monitoring concern about a major threat to forests [J]. Forest Policy and Economics, 2005, 7(5): 745-756.
[6] SETO K C, GUNERALP B, HUTYRA L R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40): 16083-16088.
[7] CHURKINA G. Carbon cycle of urban ecosystems [M]// LAL R, AUGUSTIN B. Carbon Sequestration in Urban Ecosystems. Springer Netherlands, 2012: 315-330.
[8] GRIMM N B, FAETH S H, GOLUBIEWSKI N E, et al. Global change and the ecology of cities [J]. Science, 2008, 319(5864): 756-760.
[9] 谈明洪, 李秀彬, 吕昌河. 20世纪90年代中国大中城市建设用地扩张及其对耕地的占用 [J]. 中国科学D辑(地球科学), 2004, 34(12): 1157-1165.
[10] 刘纪远, 刘明亮, 庄大方, 等. 中国近期土地利用变化的空间格局分析 [J]. 中国科学D辑(地球科学), 2002, 32(12): 1031-1040, 1058-1060.
[11] 蔡运龙, 傅泽强, 戴尔阜. 区域最小人均耕地面积与耕地资源调控 [J]. 地理学报, 2002, 57(2): 127-134.
[12] ZHANG C, TIAN H Q, CHEN G S, et al. Impacts of urbanization on carbon balance in terrestrial ecosystems of the southern United States [J]. Environmental Pollution, 2012, 164: 89-101.
[13] CHURKINA G, BROWN D G, KEOLEIAN G. Carbon stored in human settlements: The conterminous United States [J]. Global Change Biology, 2010, 16(1): 135-143.
[14] BAE J, RYU Y. Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park [J]. Landscape and Urban Planning, 2015, 136: 57-67.
[15] DEFRIES R S, FIELD C B, FUNG I, et al. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity [J]. Global Biogeochemical Cycles, 1999, 13(3): 803-815.
[16] PATAKI D E, ALIG R J, FUNG A S, et al. Urban ecosystems and the north american carbon cycle [J]. Global Change Biology, 2006, 12(11): 2092-2102.
[17] POUYAT R V, YESILONIS I D, NOWAK D J. Carbon storage by urban soils in the united states [J]. Journal of Environmental Quality, 2006, 35(4): 1566-1575.
[18] POUYAT R, YESILONIS I, GOLUBIEWSKI N. A comparison of soil organic carbon stocks between residential turf grass and native soil [J]. Urban Ecosystems, 2009, 12(1): 45-62.
[19] 刘艺杉, 刘自学, 李晓光, 等. 北京地区3种冷季型禾本科草坪草生物量及养分吸收动态的研究 [J]. 草业科学, 2008(4): 88-94.
[20] ZHANG C, TIAN H, PAN S, et al. Multi-factor controls on terrestrial carbon dynamics in urbanized areas [J]. Biogeosciences, 2014, 11(24): 7107-7124.
[21] LOPEZ E, BOCCO G, MENDOZA M, et al. Predicting land-cover and land-use change in the urban fringe—A case in Morelia City, Mexico [J]. Landscape and Urban Planning, 2001, 55(4): 271-285.
[22] HAREGEWEYN N, FIKADU G, TSUNEKAWA A, et al. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar, Ethiopia [J]. Landscape and Urban Planning, 2012, 106(2): 149-157.
[23] SCHNEIDER A. Monitoring land cover change in urban and pen-urban areas using dense time stacks of landsat satellite data and a data mining approach [J]. Remote Sensing of Environment, 2012, 124: 689-704.
[24] FU Y C, LU X Y, ZHAO Y L, et al. Assessment impacts of weather and land use/land cover (LULC) change on urban vegetation net primary productivity (NPP): A case study in Guangzhou, China [J]. Remote Sensing, 2013, 5(8): 4125-4144.
[25] DADRAS M, SHAFRI H Z, AHMAD N, et al. Land use/cover change detection and urban sprawl analysis in Bandar Abbas City, Iran [J]. Scientific World Journal, 2014, 2014: 690872.
[26] LORENZ K, LAL R. Terrestrial carbon management in urban ecosystems and water quality [M]// LAL R, AUGUSTIN B. Carbon Sequestration in Urban Ecosystems. Springer Netherlands, 2012: 73-100.
[27] SVIREJEVA-HOPKINS A, SCHELLNHUBER H J. Urban expansion and its contribution to the regional carbon emissions: Using the model based on the population density distribution [J]. Ecological Modelling, 2008, 216(2): 208-216.
[28] BELL M J, WORRALL F, SMITH P, et al. UK land-use change and its impact on SOC: 1925-2007 [J]. Global Biogeochemical Cycles, 2011, 25(4): 389-395.
[29] TOMLINSON R W, MILNE R M. Soil carbon stocks and land cover in northern ireland from 1939 to 2000 [J]. Applied Geography, 2006, 26(1): 18-39.
[30] CANNELL M G R, MILNE R, HARGREAVES K J, et al. National inventories of terrestrial carbon sources and sinks: The UK experience [J]. Climatic Change, 1999, 42(3): 505-530.
[31] SCHALDACH R, ALCAMO J. Simulating the effects of urbanization, afforestation and cropland abandonment on a regional carbon balance: A case study for central Germany [J]. Regional Environmental Change, 2007, 7(3): 137-148.
[32] KAYE J P, MAJUMDAR A, GRIES C, et al. Hierarchical bayesian scaling of soil properties across urban, agricultural, and desert ecosystems [J]. Ecological Applications, 2008, 18(1): 132-145.
[33] EIGENBROD F, BELL V A, DAVIES H N, et al. The impact of projected increases in urbanization on ecosystem services [J]. Proceedings of the Royal Society B—Biological Sciences, 2011, 278(1722): 3201-3208.
[34] HOWARD D M, HOWARD P J A, HOWARD D C. A markov model projection of soil organic-carbon stores following land-use changes [J]. Journal of Environmental Management, 1995, 45(3): 287-302.
[35] EDMONDSON J L, DAVIES Z G, MCHUGH N, et al. Organic carbon hidden in urban ecosystems [J]. Scientific Reports, 2012, 2(2): 5682-5700.
[36] RACITI S M, HUTYRA L R, FINZI A C. Depleted soil carbon and nitrogen pools beneath impervious surfaces [J]. Environmental Pollution, 2012, 164: 248-251.
[37] 李泽红, 王卷乐, 赵中平, 等. 丝绸之路经济带生态环境格局与生态文明建设模式 [J]. 资源科学, 2014, 36(12): 2476-2482.
[38] JOBBÁGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecological Applications, 2000, 10(2): 423-436.
[39] 刘生龙, 王亚华, 胡鞍钢. 西部大开发成效与中国区域经济收敛 [J]. 经济研究, 2009(9): 94-105.
[40] 曹华, 李远新, 高虎. 新丝绸之路让乌鲁木齐成为区域经济中心[J]. 大陆桥视野, 2013(9): 34-39.
[41] 龙海丽, 王爱辉. 乌鲁木齐近50年气温变化与城市化发展关系 [J]. 云南地理环境研究, 2013(4): 10-14.
[42] 成鹏. 乌鲁木齐地区近50 a降水特征分析 [J]. 干旱区地理, 2010(4): 580-587.
[43] 刘纪远, 匡文慧, 张增祥, 等. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局 [J]. 地理学报, 2014(1): 3-14.
[44] RIDD M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities [J]. International Journal of Remote Sensing, 1995, 16(12): 2165-2185.
[45] LU D S, LI G Y, MORAN E, et al. Mapping impervious surfaces with the integrated use of landsat thematic mapper and radar data: A case study in an urban-rural landscape in the Brazilian Amazon [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6): 798-808.
[46] LU D S, WENG Q H. Spectral mixture analysis of the urban landscape in indianapolis with Landsat ETM+ imagery [J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(9): 1053-1062.
[47] 李小涵, 王朝辉. 两种测定土壤有机碳方法的比较 [J]. 分析仪器, 2009(5): 78-80.
[48] WU H B, GUO Z T, PENG C H. Distribution and storage of soil organic carbon in china [J]. Global Biogeochemical Cycles, 2003, 17(2): 1-6.
[49] 新疆维吾尔自治区农业厅. 新疆土壤 [M]. 北京: 科学出版社, 1996.
[50] 王渊刚, 罗格平, 冯异星, 等. 天山北麓不同土地覆被下土壤有机碳垂直分布特征 [J]. 干旱区研究, 2013, 30(5): 913-918.
[51] 史琰. 中国城市建成区植被结构特征和碳吸收 [D]. 杭州: 浙江大学, 2013.
[52] 陈耀亮, 罗格平, 叶辉, 等. 近30年土地利用变化对新疆森林生态系统碳库的影响 [J]. 地理研究, 2013, 32(11): 1987-1999.
[53] VASENEV V I, STOORVOGEL J J, VASENEV I I. Urban soil organic carbon and its spatial heterogeneity in comparison with natural and agricultural areas in the moscow region [J]. Catena, 2013, 107: 96-102.
[54] SCALENGHE R, MARSAN F A. The anthropogenic sealing of soils in urban areas [J]. Landscape and Urban Planning, 2009, 90(1/2): 1-10.
[55] XU N Z, LIU H Y, WEI F, et al. Urban expanding pattern and soil organic, inorganic carbon distribution in Shanghai, China [J]. Environmental Earth Sciences, 2012, 66(4): 1233-1238.
[56] 陈耀亮, 罗格平, 叶辉, 等. 1975—2005 年中亚土地利用/覆被变化对森林生态系统碳储量的影响 [J]. 自然资源学报, 2015, 30(3): 397-408.
[57] 于贵瑞, 王秋凤, 朱先进. 区域尺度陆地生态系统碳收支评估方法及其不确定性 [J]. 地理科学进展, 2011, 30(1):103-113.
[58] 李伟峰, 欧阳志云. 城市生态系统的格局和过程 [J]. 生态环境, 2007, 16(2): 672-679.
文章导航

/