资源评价

黄土丘陵区典型植被枯落物坡面分布及混入土壤对土壤性状的影响

展开
  • 1.西北农林科技大学水土保持研究所,黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西 杨凌 712100;
    2.中国科学院大学,北京 100049
王忠禹(1993- ),男,硕士研究生,主要研究方向为水土保持。E-mail: 15091860140@163.com

收稿日期: 2017-11-14

  网络出版日期: 2018-11-20

基金资助

国家自然科学基金面上项目(41771555); 国家自然科学基金重点项目(41530858); 国家重点研发计划(2016YFC0501703); 陕西省创新人才推进计划—青年科技新星项目(2017KJXX-88)

Distribution of Plant Litter on the Slope and Its Effect of Litter Incorporated in the Soil on Soil Properties in Typical Vegetation Community in Loess Hilly Region

Expand
  • 1.Institute of Soil and Water Conservation, CAS and Ministry of Water Resource, Northwest A&F University, Yangling 712100, China;
    2.University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-11-14

  Online published: 2018-11-20

Supported by

National Natural Science Foundation of China, No. 41771555 and 41530858; National Key R ɭ Program of China, No. 2016YFC0501703; The Innovative Talents Promotion Plan in Shaanxi Province, No. 2017KJXX-88

摘要

黄土丘陵区植被的恢复可能影响枯落物分布特征,进而对土壤性状产生影响。论文选取刺槐(Robinia pseudoacacia)人工林、柠条(Caragana intermedia)人工林、铁杆蒿(Artemisia gmelini)群落和白羊草(Bothriochloa ischaemum)群落4种典型植被样地,研究其枯落物坡面(坡长40~80 m)分布特征及自然条件混入土壤中对土壤理化性状的影响。结果表明:1)4种典型植被样地地表枯落物蓄积量(143.89~833.04 g/m2)、盖度(0.36~0.63)和厚度(0.77~2.03 cm)均表现为刺槐人工林>柠条人工林>铁杆蒿群落>白羊草群落;土壤中枯落物混入量(178.80~657.21 g/m2)和混入深度(1.33~2.29 cm)均表现为刺槐人工林>铁杆蒿群落>柠条人工林>白羊草群落;土壤中枯落物混入量占枯落物总蓄积量的比例(45.91%~74.02%)表现为铁杆蒿群落>柠条人工林>白羊草群落>刺槐人工林。2)4种典型植被样地地表枯落物蓄积量和土壤中枯落物混入量均为坡下高于坡上,受径流冲刷和泥沙分离—输移—沉积过程的影响,枯落物地表蓄积量和土壤混入量在坡中波动较大;随枯落物地表盖度的增加,地表枯落物蓄积量呈指数函数增加(P<0.01),且随地表枯落物蓄积量的增加,土壤中枯落物混入量呈对数函数增加(P<0.01)。3)土壤容重、粘结力和水稳性团聚体几何平均直径(WAS-GMD)随土壤中枯落物混入量的增大而线性降低(P<0.01),土壤有机碳和全氮含量在铁杆蒿群落和白羊草群落中均随土壤中枯落物混入量的增大而线性增加(P<0.05)。该研究将为评价黄土高原退耕还林还(草)工程生态成效、修正土壤侵蚀预报模型提供重要依据。

本文引用格式

王忠禹, 王兵, 刘国彬, 刘佳鑫, 李兆松 . 黄土丘陵区典型植被枯落物坡面分布及混入土壤对土壤性状的影响[J]. 自然资源学报, 2018 , 33(11) : 2020 -2031 . DOI: 10.31497/zrzyxb.20171199

Abstract

The plant litter incorporate in soil generally has great effect on soil properties. During the process of vegetation restoration in the hilly region of the Loess Plateau, the distribution of plant litter would be changed and hence affect the soil property. Four typical vegetation communities, Robinia pseudoacacia plantation, Caragana intermedia plantation, Artemisia gmelinii community and Bothriochloa ischaemum community were selected to study the distribution of litter on the slope (ranged from 40 to 80 m) and to discuss the effects of plant litter incorporated in soil on soil properties. The results showed that: 1) The volume (range from 143.89 to 833.04 g/m2), coverage (range from 36% to 63%) and thickness (range from 0.77 to 2.03 cm) of aboveground litter in Robinia pseudoacacia plantation were the highest, followed by those in Caragana intermedia plantation, Artemisia gmelinii community and Bothriochloa ischaemum community. For the biomass of incorporated litter (ranged from 178.80 to 657.21 g/m2) and the litter incorporation depth (ranged from 1.33 to 2.29 cm), the maximum values were found in Robinia pseudoacacia plantation, then followed by those in Artemisia gmelinii community, Caragana intermedia plantation and Bothriochloa ischaemum community. The amount of litter incorporated in soil accounts for the highest proportion of the total volume of litter (ranged from 45.91% to 74.02%). The vegetation communities with the ratio of the amount of litter incorporated in soil to total litter volume in descending order were Artemisia gmelinii plantation, Caragana intermedia plantation, Bothriochloa ischaemum community, and Robinia pseudoacacia community. 2) The aboveground litter volume and the amount of litter incorporated in soil on lower slopes were 1.05-2.48 times and 1.04-1.41 times higher than those on higher slope. While for the middle slope, the aboveground litter volume and the amount of litter incorporated in soil varied greatly and no significant relationship was found between middle slope and upper slope or lower slope due to the influence of runoff scouring and the process of sediment detachment, transport and deposition. The aboveground litter volume increased exponentially with the increase of litter coverage (P<0.01). The amount of litter incorporated in soil increased with the aboveground litter volume, and the relationship between them is a logarithm function (P<0.01). 3) With the increasing of litter incorporated in soil, soil properties of bulk density, cohesive force and WAS-GMD decreased linearly (P<0.01). The soil organic carbon and total nitrogen content increased linearly with the increase of litter incorporated in soil in grasslands (Artemisia gmelinii community and Bothriochloa ischaemum community), while no significant relationship was found between Robinia pseudoacacia plantation and Caragana intermedia plantation. This study would provide theoretical basis for assessing ecological effect of vegetation restoration and improving soil erosion model on the Loess Plateau.

参考文献

[1]刘强, 彭少麟. 植物凋落物生态学 [M]. 北京: 科学出版社, 2010.
[LIU Q, PENG S L, The Ecology of Vegetation Litter. Beijing: Science Press, 2010. ]
[2]林波, 刘庆, 吴彦, 等. 森林凋落物研究进展[J]. 生态学杂志, 2004, 23(1): 60-64.
[LIN B, LIU Q, WU Y, et al.Research progress of forest litter. Chinese Journal of Ecology, 2004, 23(1): 60-64. ]
[3]赵勇, 吴明作, 樊巍, 等. 太行山针、阔叶森林凋落物分解及养分归还比较[J]. 自然资源学报, 2009, 24(9): 1616-1624.
[ZHAO Y, WU M Z, FAN W, et al.Comparison of nutrient return and litter decom position between coniferous and broad-leaved forests in hilly region of Taihang Mountains. Journal of Natural Resources, 2009, 24(9): 1616-1624. ]
[4]孙元发, 吴铭. 黑河地区不同优势树种林下枯落物量的比较[J]. 防护林科技, 2014, 32(8): 38-39.
[SUN Y F, WU M.Comparing the litter amounts under dominant tree species of Heihe District. Protect Forest Science and Technology, 2014, 32(8): 38-39. ]
[5]栾莉莉, 张光辉, 孙龙, 等. 黄土高原区典型植被枯落物蓄积量空间变化特征[J]. 中国水土保持科学, 2015, 13(6): 48-53.
[LUAN L L, ZHANG G H, SUN L, et al.Spatial variation of typical plant litters in the Loess Plateau. Science of Soil and Water Conservation, 2015, 13(6): 48-53. ]
[6]FACELLI J M, PICKETT S T.Plant litter: Its dynamics and effects on plant community structure[J]. The Botanical Review, 1991, 57(1): 1-32.
[7]吴钦孝. 森林保持水土机理及功能调控技术 [M]. 北京: 科学出版社, 2005: 42-57.
[WU Q X.Soil and Water Conservation Mechanism and Function Regulation and Control Technology in Forest. Beijing: Science Press, 2005: 42-57. ]
[8]韩冰, 吴钦孝, 刘向东, 等. 林地枯枝落叶层对溅蚀影响的研究[J]. 防护林科技, 1994, 19(2): 7-8.
[HAN B, WU Q X, LIU X D, et al.Influence of litter layer on splashing in forest land. Protect Forest Science and Technology, 1994, 19(2): 7-8. ]
[9]邱甜甜, 刘国彬, 王国梁, 等. 人工油松林不同生长阶段深层土壤有机碳和活性碳的差异及其影响因素[J]. 自然资源学报, 2016, 31(8): 1399-1409.
[QIU T T, LIU G B, WANG G L, et al.Changes of organic carbon and readily oxidable carbon in deep soil at different developmental stages of artificial Pinus tabulae form is plantation and the impact factors. Journal of Natural Resources, 2016, 31(8): 1399-1409. ]
[10]许中旗, 李文华, 许晴, 等. 人为干扰对典型草原土壤碳密度及生态系统碳贮量的影响[J]. 自然资源学报, 2009, 24(4): 621-629.
[XU Z Q, LI W H, XU Q, et al.The impacts of human disturbances on soil carbon density and ecosystem storage of carbon of typical steppes. Journal of Natural Resources, 2009, 24(4): 621-629. ]
[11]赵鸿雁, 吴钦孝, 刘国彬. 黄土高原人工油松林枯枝落叶层的水土保持功能研究[J]. 林业科学, 2003, 39(1): 168-172.
[ZHAO H Y, WU Q X, LIU G B.Study on soil and water conservation function of litter layer of artificial Chinese pine in Loess Plateau. Scientia Silvae Sinicae, 2003, 39(1): 168-172. ]
[12]郭忠升, 吴钦孝, 任锁堂. 森林植被对土壤入渗速率的影响[J]. 陕西林业科技, 1996(3): 27-31.
[GUO Z S, WU Q X, REN S T.Effect of forest vegetation on soil infiltration rate. Shaanxi Forest Science and Technology, 1996(3): 27-31. ]
[13]逯军峰. 不同林龄油松人工林凋落物及其对土壤理化性质的影响研究[D]. 兰州: 甘肃农业大学, 2007.
[FENG J F.Litter of Pinus tabulaeformis Plantations on Different Ages and Their Impact on Soil Physical and Chemical Properties. Lanzhou: Gansu Agricultural University, 2007. ]
[14]李强, 周道玮, 陈笑莹, 等. 地上枯落物的累积、分解及其在陆地生态系统中的作用[J]. 生态学报, 2014, 34(14): 3807-3819.
[LI Q, ZHOU D W, CHEN X Y, et al.The accumulation, decomposition and ecological effects of above-ground litter in terrestrial ecosystem. Acta Ecologica Sinica, 2014, 34(14): 3807-3819. ]
[15]TSUKAMOTO J.Downhill movement of litter and its implication for ecological studies in three types of forest in Japan[J]. Ecological Research, 1991, 6(3): 333-345.
[16]LI Z W, ZHANG G H, GENG R, et al.Spatial heterogeneity of soil detachment capacity by overland flow at a hillslope with ephemeral gullies on the Loess Plateau[J]. Geomorphology, 2015, 248: 264-272.
[17]KNAPEN A, POESEN J, DE BEATS S.Seasonal variations in soil erosion resistance during concentrated flow for a loess-derived soil under two contrasting tillage practices[J]. Soil & Tillage Research, 2007, 94(2): 425-440.
[18]DENG L, SHANGGUAN Z P, SWEENEY S.“Grain for Green” driven land use change and carbon sequestration on the Loess Plateau[J]. China Scientific Reports, 2014, 4: 7039
[19]李学斌, 陈林, 樊瑞霞, 等. 围封条件下荒漠草原4种典型植物群落枯落物输入对土壤理化性质的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 101-110.
[LI X B, CHEN L, FAN R X, et al.Effect of litter input on physico-chemical properties of soil in four typical plant communities of desert steppe under confining conditions. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 101-110. ]
[20]朱良君, 张光辉, 胡国芳, 等. 坡面流超声波水深测量系统研究[J]. 水土保持学报, 2013, 27(1): 235-239.
[ZHU L J, ZHANG G H, HU G F, et al.Study on evaluating ultrasonic measurement system of overland flow depth. Journal of Soil and Water Conservation, 2013, 27(1): 235-239. ]
[21]WANG B, ZHANG G H, SHI Y Y, et al.Effect of natural restoration time of abandoned farmland on soil detachment by overland flow in the Loess Plateau of China[J]. Earth Surface Processes & Landforms, 2013, 38(14): 1725-1734.
[22]SIX J, ELLIOTT E T, PAUSTIAN K.Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62: 1367-1377
[23]向云, 程曼, 安韶山, 等. 延河流域不同立地条件下植物-枯落物-土壤生态化学计量学特征[J]. 自然资源学报, 2015, 30(10): 1642-1652.
[XIANG Y, CHEN M, AN S H, et al.Soil-plant-litter stoichiometry under different site conditions in Yanhe Catchment, China. Journal of Natural Resources, 2015, 30(10): 1642-1652. ]
[24]鲍士旦. 土壤农化分析 [M]. 第3版. 北京: 中国农业出版社, 2007.
[BAO S D.Analysis of Soil Agriculture. The 3rd Edition. Beijing: China Agriculture Press, 2007. ]
[25]侯晓娜, 李慧, 朱刘兵, 等. 生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响[J]. 中国农业科学, 2015, 48(4): 705-712.
[HOU X N, LI H, ZHU L B, et al.Effect of biochar and straw addition on lime concretion black soil aggregate composition and organic carbon distribution. Scientia Agricultura Sinica, 2015, 48(4): 705-712. ]
[26]毛霞丽, 陆扣萍, 何丽芝, 等. 长期施肥对浙江稻田土壤团聚体及其有机碳分布的影响[J]. 土壤学报, 2015, 52(4): 828-838.
[MAO X L, LU K P, HE L Z, et al.Effects of long-term fertilization application on distribution of aggregates and aggregate-associated organic carbon in paddy soil. Acta Pedologica Sinica, 2015, 52(4): 828-838. ]
[27]吕刚, 魏忠平, 高英旭, 等. 不同土地利用类型植物根系与土壤抗蚀性关系研究[J]. 干旱地区农业研究, 2013, 31(2): 111-115.
[LÜ G, WEI Z P, GAO Y X, et al.Study on relationship between plant roots and soil anti-erodibility of different land utilization types. Agricultural Research in the Arid Areas, 2013, 31(2): 111-115. ]
[28]徐宪立, 马克明, 傅伯杰, 等. 植被与水土流失关系研究进展[J]. 生态学报, 2006, 26(9): 3137-3143.
[XU X L, MA K M, FU B J, et al.Research review of the relationship between vegetation and soil loss. Acta Ecologica Sinica, 2006, 26(9): 3137-3143. ]
[29]从怀军, 成毅, 安韶山, 等. 黄土丘陵区不同植被恢复措施对土壤养分和微生物量C, N, P的影响[J]. 水土保持学报, 2010, 24(4): 217-221.
[CONG H J, CHENG Y, AN S S, et al.Changes of soil nutrient and soil microbial biomass C, N and P in different plant rehabilitation on the loess hilly area of Ningxia. Journal of Soil and Water Conservation, 2010, 24(4): 217-221. ]
[30]安韶山, 黄懿梅. 黄土丘陵区柠条林改良土壤作用的研究[J]. 林业科学, 2006, 42(1): 70-74.
[AN S S, HUANG Y M.Study on the ameliorate benellts of Caragana korshinskii shrubwood to soil properties in loess hilly area. Scientia SilvaeSinicae, 2006, 42(1): 70-74. ]
[31]刘增文, 王乃江, 李雅素, 等. 森林生态系统稳定性的养分原理[J]. 西北农林科技大学学报(自然科学版), 2006, 34(12): 129-134.
[LIU Z W, WANG N J, LI Y S, et al.Nutrient principle of forest ecosystem stability. Journal of Northwest A & F University (Natural Science), 2006, 34(12): 129-134. ]
[32]李鑫, 曾全超, 安韶山, 等. 黄土高原纸坊沟流域不同植物叶片及枯落物的生态化学计量学特征研究[J]. 环境科学, 2015, 36(3): 1084-1091.
[LI X, ZENG Q C, AN S S, et al.Ecological stoichiometric characteristics in leaf and litter under different vegetation types of Zhifanggou Watershed on the Loess Plateau, China. Environmental science, 2015, 36(3): 1084-1091. ]
[33]任书杰, 曹明奎, 陶波, 等. 陆地生态系统氮状态对碳循环的限制作用研究进展[J]. 地理科学进展, 2006, 25(4): 58-67.
[REN S J, CAO M K, TAO B, et al.The effects of nitrogen limitation on terrestrial ecosystem carbon cycle: A Review. Progress in Geography, 2006, 25(4): 58-67. ]
[34]肖玉, 谢高地, 安凯. 青藏高原生态系统土壤保持功能及其价值[J]. 生态学报, 2003, 23(11): 2367-2378.
[XIAO Y, XIE G D, AN K.The function and economic value of soil conservation of ecosystems in Qinhai-tibet Plateau. Acta Ecologica Sinica, 2003, 23(11): 2367-2378. ]
[35]陶朋闯, 陈效民, 靳泽文, 等. 生物质炭与氮肥配施对旱地红壤微生物量碳、氮和碳氮比的影响[J]. 水土保持学报, 2016, 30(1): 231-235.
[TAO P C, CHEN X M, JIN Z W, et al.Effects of biochar combined with nitrogen fertilizers on microbial biomass C, N and carbon-to-nitrogen ratio of upland red soil. Soil and Water Conservation, 2016, 30(1): 231-235. ]
[36]孙龙, 张光辉, 栾莉莉, 等. 黄土丘陵区表层土壤有机碳沿降水梯度的分布[J]. 应用生态学报, 2016, 27(2): 532-538.
[SUN L, ZHANG G H, LUAN L L, et al.Distribution of soil organic carbon in surface soil along a precipitation gradient in loess hilly. Chinese Journal of Applied Ecology, 2016, 27(2): 532-538. ]
文章导航

/