资源评价

20 a来中国占补耕地光温生产潜力时空特征

展开
  • 1. 中国科学院 地理科学与资源研究所, 北京100101;
    2. 宁夏地震局,银川750001
王静(1987-),女,宁夏人,从事遥感与GIS应用研究

收稿日期: 2011-11-24

  修回日期: 2012-05-16

  网络出版日期: 2013-01-19

基金资助

国家十二五科技支撑计划(2012BAI32B06);中国科学院知识创新工程重大项目第一主题(KSCX1-YW-09-01)。

Spatial-Temporal Characteristics of Light-Temperature Potential Productivity on Cropland Occupation and Supplement in China in the Last 20 Years

Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Ningxia Hui Autonomous Region Earthquake Administration, Yinchuan 750001, China

Received date: 2011-11-24

  Revised date: 2012-05-16

  Online published: 2013-01-19

摘要

研究占补耕地光温生产潜力的时空特征对指导耕地资源开发与粮食生产具有重要意义。论文基于1980年代末—2010年的多期土地利用和多年平均光温生产潜力,以占用耕地与增补耕地单位面积光温生产潜力为依据,分析20 a来中国占补耕地光温生产潜力时空特征,并进一步探讨其对光温生产潜力总量的影响。结果表明:①1980年代末—2010年,全国耕地存在明显的占优补劣情况;②从各分区看,东北平原主产区、北方干旱半干旱主产区、青藏高原区、华南主产区、云贵高原区占用耕地单位面积光温生产潜力持续高于增补耕地,长江中下游主产区占用耕地单位面积光温生产潜力持续低于增补耕地,四川盆地及周边地区、黄土高原区、海南由占优补劣变为占劣补优,黄淮海平原区由占劣补优变为占优补劣;③占优补劣对全国光温生产潜力总量变化有显著影响;④东北平原主产区等我国耕地开垦的主要区域受占优补劣的影响较大,华南主产区等耕地损失区受占优补劣的影响相对较小,占劣补优对缩小耕地占用对光温生产潜力总量影响的作用并不大。

本文引用格式

王静, 杨小唤, 蔡红艳, 李月娇 . 20 a来中国占补耕地光温生产潜力时空特征[J]. 自然资源学报, 2013 , 28(1) : 126 -136 . DOI: 10.11849/zrzyxb.2013.01.013

Abstract

It is of great significance to study the light-temperature potential productivity (LTPP) on cropland occupation and supplement for reasonable developing cropland resources and instructing grain production. This paper analyzed spatial-temporal characteristics of LTPP on cropland occupation and supplement for recent 20 years in terms of LTPP per unit area based on multiperiod land use change data and average annual LTPP from 1990 to 2010. The results demonstrate: 1) LTPP per unit area on cropland occupation was higher than on cropland supplement at country level from the 1980s to 2010. 2)At regional level, LTPP per unit area on cropland occupation was continuously higher than on supplement in the last 20 years in producing areas of Northeast China Plain, arid and semiarid northern China, Qinghai Tibetan Plateau, South China and Yunnan-Guizhou Plateau. Cropland with lower LTPP per unit area was occupied and cropland with higher LTPP per unit area was supplemented in the middle and lower reaches of the Yangtze River. LTPP per unit area on occupation was higher for the former 10 years but however, lower for the latter 10 years in Sichuan Basin and the surrounding area, the Loess Plateau, and Hainan. The cropland with higher LTPP per unit area was supplemented for the former 10 years and occupied for the latter 10 years in Huang-Huai-Hai Plain. 3)Better cropland occupied and worse cropland supplemented had an important effect on total LTPP at country level. 4)The regions (Northeast China Plain, etc.), with a greater deal of cropland supplement than occupation were remarkably affected by better cropland occupied and worse cropland supplemented, which had a slight effect on the regions (South China and so on) with a greater deal of cropland occupation than supplement. Better cropland supplied than worse cropland occupied also slightly impacts the regions (the middle and lower reaches of the Yangtze River and so on) where more cropland was occupied and less cropland was supplemented.

参考文献

[1] 国家发展与改革委员会. 国家粮食安全中长期规划纲要(2008—2020)[M]. 2008.[The national development and reform commission. The National Food Safety Plan for Medium and Long Term Planning(2008-2020). 2008.]

[2] 刘纪远, 张增祥, 庄大方, 等. 20世纪90年代中国土地利用变化时空特征及其成因分析[J]. 地理研究, 2003, 22(1): 1-12.[LIU Ji-yuan, ZHANG Zeng-xiang, ZHUANG Da-fang, et al. A study on the spatial-temporal dynamic changes of land-use and driving forces analyses of China in the 1990s. Geographical Research, 2003, 22(1): 1-12.]

[3] 刘纪远, 刘明亮, 庄大方, 等. 中国近期土地利用变化的空间格局分析[J]. 中国科学D辑, 2002, 32(12): 1031-1040.[LIU Ji-yuan, LIU Ming-liang, ZHUANG Da-fang, et al. The analysis of spatial pattern of land-use changes of China recently. Science in China Series D, 2002, 32(12): 1031-1040.]

[4] 石瑞香, 杨小唤. 中国耕地变化区的气候背景对比分析[J]. 地球信息科学学报, 2010, 12(3): 309-314.[DAN Rui-xiang, YANG Xiao-huan. Research on the climate background in arable land changed areas of China. Journal of Geo-information Science, 2010, 12(3): 309-314.]

[5] Loom I S. Williams W A. maximum crop productivity: An estimate [J]. Crop Science, 1963, 3(1): 67-72.

[6] Hanks R J. Yield and water use relationships: An overview //Limitation to Efficient Water Use in Crop Production. 1983.

[7] De Wit C T. Photosynthesis in Leaf Canopies [M]. Wageningen: Center for Agricultural Publications and Documentation, 1965: 201-300.

[8] De Wit C T. Simulation of Assimilation, Respiration and Transpiration of Crops [M]. Wageningen: Center for Agricultural Publications and Documentation, 1978: 1-112.

[9] Schulze R. Transcending scales of space and time in impact studies of climate and climate change on agrohydrological response [J]. Agriculture, Ecosystems and Environment, 2000, 82: 185-212.

[10] Olesen J E, Bocher P K, Jensen T. Comparison of scales of climate and soil data for aggregating simulated yields of winter wheat in Denmark [J]. Agriculture, Ecosystems and Environment, 2000, 82: 213-228.

[11] Childs S W, Gilley J R, Splinter W E. A simplified model of corn growth under moisture stress [J]. Transaction of American Society of Agricultural Engineers, 1977, 20: 858-865.

[12] Kiniry J R, Bockholt A J. Maize and sorghum simulation in diverse Texas environments [J]. Agronomy Journal, 1998, 90: 682-687.

[13] Wilkerson G G, Jones J W, Boote K J, et al. Modeling soybean growth for crop management [J]. Transaction of American Society of Agricultural Engineers, 1983, 26: 63-73.

[14] Backalenko B I, Globus A M, Poluektov R A. Studies of sensitivity of a dynamic model of grain crop productivity to soil hydrophysical information [J]. Russian Meteorology and Hydrology, 2008, 9: 94-101.

[15] Belova G P, Bodro V A, Globus A M, et al. Soil hydro physical properties and mathematical modeling of salt movement in the soil profile [J]. Soil Science, 1984, 4: 23-44.

[16] 高文彬, 江东, 杨小唤. 遥感数据驱动的耕地生产潜力模型与应用[J]. 地理科学进展, 2009, 28(4): 597-602.[GAO Wen-bin, JIANG Dong, YANG Xiao-huan. Cultivated land potential production model and application driven by RS information. Progress in Geography, 2009, 28(4): 597-602.]

[17] 程传周, 杨小唤, 李月娇, 等. 基于不同模型组合的山东省耕地生产潜力计算与分析[J]. 资源科学, 2010, 32(11): 2165-2171.[CHENG Chuan-zhou, YANG Xiao-huan, LI Yue-jiao, et al. Calculation and analysis of cropland potential productivity in Shandong province with different models. Resources Science, 2010, 32(11): 2165-2171.]

[18] 程传周, 杨小唤, 徐瑞娜, 等. 农业生产潜力计算与分析系统的设计与实现[J]. 地球信息科学学报, 2011, 13(2): 205-212.[CHENG Chuan-zhou, YANG Xiao-huan, XU Rui-na, et al. Design and realization of calculation and analysis system for agricultural potential productivity. Journal of Geo-information Science, 2011, 13(2): 205-212.]

[19] 刘纪远, 徐新良, 庄大方, 等. 20世纪90年代LUCC 过程对我国农田光温生产潜力的影响[J]. 中国科学D辑, 2005, 35(6): 483-492.[LIU Ji-yuan, XU Xin-liang, ZHUANG Da-fang, et al. The impact of LUCC process on potential productivity for crops of China in 1990s. Science in China Series D, 2005, 35(6): 483-492.]

[20] 徐新良, 刘纪远, 曹明奎, 等. 近期气候波动与LUCC过程对东北农田生产潜力的影响[J]. 地理科学, 2007, 27(3): 318-324.[XU Xin-liang, LIU Ji-yuan, CAO Ming-kui, et al. Impact of recent climate fluctuation and LUCC process on potential productivity for crops in Northeast China. Scientia Geographica Sinica, 2007, 27(3): 318-324.]

[21] 程传周, 杨小唤, 李月娇, 等. 2005—2008年中国耕地变化对区域生产潜力的影响[J]. 地球信息科学学报, 2010, 12(5): 620-627.[CHENG Chuan-zhou, YANG Xiao-huan, LI Yue-jiao, et al. The effects of cultivated land change on regional potential productivity in China from 2005 to 2008. Journal of Geo-information Science, 2010, 12(5): 620-627.]

[22] YANG Xiao-huan, CHENG Chuan-zhou, LI Yue-jiao. Effect of cropland occupation and supplement on light-temperature potential productivity in China from 2000 to 2008 [J]. Chinese Geographical Science, 2010, 20(6): 536-544.

文章导航

/