资源生态

模拟放牧改变了氮添加作用下高寒草甸生物量的分配模式

展开
  • 1. 中国科学院 地理科学与资源研究所 生态系统网络观测与模拟重点实验室拉萨高原生态试验站, 北京 100101;
    2. 中国科学院 地理科学与资源研究所 生态系统网络观测与模拟重点实验室, 北京 100101;
    3. 中国科学院 寒区旱区环境与工程研究所 冻土工程重点实验室, 兰州 730000;
    4. 中国科学院大学, 北京 100049

收稿日期: 2011-11-23

  修回日期: 2012-04-26

  网络出版日期: 2012-10-20

基金资助

国家重点基础研究发展计划(2010CB833502);中国科学院战略性先导科技专项(XDA05060700);国家重点基础研究发展计划(2010CB951704)。

Clipping Alters the Response of Biomass Allocation Pattern under Nitrogen Addition in an Alpine Meadow on the Tibetan Plateau

Expand
  • 1. Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    3. Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China;
    4. University of Chinese Academy of Sciences, Beijing100049, China

Received date: 2011-11-23

  Revised date: 2012-04-26

  Online published: 2012-10-20

摘要

高寒草甸是氮素匮乏的生态系统,氮添加和放牧都会显著改变土壤养分的有效性及高寒植物对养分的利用方式,从而影响群落生产力。为了认识氮沉降和放牧干扰对青藏高原高寒草甸的影响,在西藏当雄县高山嵩草草甸开展了氮添加及模拟放牧实验。在模拟放牧样地(G+N)和不放牧样地(NG+N)分别设置4个氮添加处理:0、 10、 20和40 kg N·hm-2·a-1,在生长季采用原位封顶埋管法测定净氮矿化速率,同时分析群落生物量分配与植物氮利用的相互关系。研究表明:氮添加与模拟放牧对植物的分配模式有不同的影响。在无放牧压力下,氮添加主要刺激植物地上部分的生长;在放牧压力下,氮添加更倾向于促进植物地下部分的生长。虽然剪草移走了15%~20%的地上生物量,但由于氮添加促进了植物的补偿生长,模拟放牧与不放牧处理的总生物量无显著差异,甚至前者高于后者。高寒草甸植物生物量分配对氮添加和模拟放牧的响应也体现在土壤供氮潜力的作用模式上,土壤净氮矿化速率在NG+N样地与植物地上生物量呈显著负相关,而在G+N样地与植物地下生物量呈显著负相关。这表明高寒草甸植物可以通过改变自身光合产物的分配模式来响应土壤养分状况和放牧干扰,在有效养分匮乏的高寒草甸添加氮素能够促进植物的补偿性生长。

本文引用格式

宗宁, 石培礼, 宋明华, 林琳, 马维玲, 蔣婧, 付刚, 何永涛, 张宪洲 . 模拟放牧改变了氮添加作用下高寒草甸生物量的分配模式[J]. 自然资源学报, 2012 , (10) : 1696 -1707 . DOI: 10.11849/zrzyxb.2012.10.008

Abstract

Growth of alpine plants is primarily limited by low available nitrogen in the soil. Both nitrogen addition and grazing affect soil nutrient availability and uptake of alpine plants, and consequently influence community productivity. To understand the effects of nitrogen addition and grazing on the ecosystem function, nitrogen addition experiment in combination with simulated grazing (clipping) has been conducted in an alpine ecosystem on the northern Tibetan Plateau since 2010. The levels of nitrogen addition in stimulated grazed (G+N) and non-grazed plots (NG+N) were controlled at 0 (N0), 10 (N10), 20 (N20) and 40 (N40) kg N穐m-2-1, respectively. Net nitrogen mineralization was measured by in-situ close-top incubation during the growing season in 2011. Nitrogen addition and clipping had different effects on the biomass allocation of alpine plants. Nitrogen addition mainly stimulated the above-ground productivity in non-grazed plots, but enhanced below-ground productivity in grazed plots. Although about 15%-20% of the above-ground biomass was removed by clipping, there is no difference of total biomass between grazed and non-grazed plots or even higher in grazed than non-grazed plots, owing to stimulating effects of nitrogen enrichment on the compensatory growth of alpine plants. Moreover, the different responses of biomass allocation to nitrogen addition and clipping were also reflected in the pattern closely related to soil nitrogen supply potential. Net nitrogen mineralization was negatively correlative with the above-ground biomass in non-grazed plots, but with below-ground biomass in grazed plots. It is indicated that alpine plants responded to soil nutrient and grazing by altering the allocation pattern of photosynthetic assimilates. The present study also suggested that in alpine meadow limited by available nutrient, nitrogen addition may stimulate compensatory growth of plants.

参考文献

[1] 吕超群, 田汉勤, 黄耀. 陆地生态系统氮沉降增加的生态效应[J]. 植物生态学报, 2007, 31(2): 205-218.[Lü Chao-qun, TIAN Han-qin, HUANG Yao. Ecological effects of increase nitrogen deposition in terrestrial ecosystems. Journal of Plant Ecology, 2007, 31(2): 205-218.]
[2] Van Breenmen N. Nitrogen cycle: Natural organic tendency [J]. Nature, 2002, 415: 381-382.
[3] Burke I C, Lauenroth W K, Parton W J. Regional and temporal variation in net primary production and nitrogen mineralization in grasslands [J]. Ecology, 1997, 78: 1330-1340.
[4] Tilman D. Productivity and sustainability influenced by biodiversity in grassland ecosystem [J]. Nature, 1996, 379(65/67): 718-720.
[5] 曹广民, 张金霞. 中国嵩草草甸[M]. 北京: 科学出版社, 2001: 188-216.[CAO Guang-min, ZHANG Jin-xia. China Kobresia Meadow. Beijing: Science Press, 2001: 188-216.]
[6] Neff J C, Townsend A R, Gleixner G, et al. Variable effects of nitrogen additions on the stability and turnover of organic carbon [J]. Nature, 2002, 419: 915-917.
[7] 万宏伟, 杨阳, 白世勤, 等. 羊草草原群落6种植物叶片功能特性对氮素添加的响应[J]. 植物生态学报, 2008, 32(3): 611-621.[WAN Hong-wei, YANG Yang, BAI Shi-qin, et al. Variations in leaf functional traits of six species along a nitrogen addition gradient in Leyums Chinensis steppe in Inner Mongolia. Journal of Plant Ecology, 2008, 32(3): 611-621.]
[8] Reynold J F, Thornley J N M. A shoot: Root partitioning model [J]. Annual of Botany, 1982, 49: 585-597.
[9] 赵威. 羊草对过度放牧和刈割的生理生态响应. 北京: 中国科学院植物研究所, 2006.[ZHAO Wei. Physio-ecological response of Leyums Chinensis to overgrazing and clipping. Beijing: Institute of Botany, CAS, 2006.]
[10] McNaughton S J. Grazing as an optimization process: Grass-ungulate relationships in the Serengeti [J]. American Naturalist, 1979, 113: 691-703.
[11] 李明森. 藏北高原草地资源合理利用[J]. 自然资源学报, 2000, 15(4): 335-339.[LI Ming-sen. Rational exploitation of grassland resources in the Northern Xizang Plateau. Journal of Natural Resources, 2000, 15(4): 335-339.]
[12] 陈懂懂. 青藏高原东北缘高寒草甸土壤养分、 微生物量碳氮及氮矿化潜力的研究. 兰州: 兰州大学, 2010.[CHEN Dong-dong. Research about the soil nutrients, microbial biomass C and N, and N mineralization potential of an alpine meadow on the northeastern Tibetan Plateau. Lanzhou: Lanzhou University, 2010.]
[13] 张东秋. 西藏高原草原化嵩草草甸生态系统呼吸及碳平衡. 北京: 中国科学院地理科学与资源研究所, 2005.[ZHANG Dong-qiu. The Study of Ecosystem Respiration and the Carbon Balance in Alpine Steppe-Meadow on the Tibetan Plateau. Beijing: Institute of Geographic Sciences and Natural Resources Research, CAS, 2005.]
[14] SHI Pei-li, SUN Xiao-min, XU Ling-ling, et al. Net ecosystem CO2 exchange and controlling factors in a steppe-Kobresia meadow on the Tibetan Plateau [J]. Science in China series D: Earth Sciences, 2006, 49: 207-218.
[15] 张东秋, 石培礼, 何永涛, 等. 西藏高原草原化小嵩草草甸生长季土壤微生物呼吸测定[J]. 自然资源学报, 2006, 21(3): 458-464.[ZHANG Dong-qiu, SHI Pei-li, HE Yong-tao, et al. Quantification of soil heterotrophic respiration in the growth period of alpine steppe-meadow on the Tibetan Plateau. Journal of Natural Resources, 2006, 21(3): 458-464.]
[16] Julia A K, John H, ZHAO Xin-quan. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau [J]. Ecology Letters, 2004, 7: 1170-1179.
[17] Bowman W D, Gartner J R, Holland K, et al. Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet? [J] Ecological Applications, 2006, 16(3): 1183-1193.
[18] Lü Chao-qun, TIAN Han-qin. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data [J]. Journal of Geophysical Research, 2007, 12, doi: 10.1029/2006JD007990.
[19] 王其兵, 李凌浩, 白永飞, 等. 气候变化对草甸草原土壤氮素矿化作用影响的实验研究[J]. 植物生态学报, 2000, 24(6): 687-692.[WANG Qi-bing, LI Ling-hao, BAI Yong-fei, et al. Field experimental studies on the effects of climate change on nitrogen mineralization of meadow steppe soil. Acta Phytoecologica Sinica, 2000, 24(6): 687-692.]
[20] 徐俊俊. 冻融交替对高寒草甸土壤氮素的影响. 成都: 四川农业大学, 2010.[XU Jun-jun. Effects of Freezing and Thawing Alternation on Soil Nitrogen Pool in the Alpine Meadow. Chengdu: Sichuan Agriculture University, 2010.]
[21] Smith S J, Young L B, Miller G E. Evaluation of soil nitrogen mineralization potentials under modified field conditions [J]. Soil Science Society of America Journal, 1977, 41: 74-76.
[22] LUO Yi-qi, ZHOU Xu-hui. Soil Respiration and the Environment [M]. London: Academic Press, 2006: 99-101.
[23] 张晓娜. 内蒙古典型草原群落和主要植物种对氮素添加和刈割干扰的响应. 北京: 中国科学院植物研究所, 2009.[ZHANG Xiao-na. Responses of Community and Major Plant Species to Nitrogen Addition and Clipping in Typical Steppe of Inner Mongolia. Beijing: Institute of Botany, CAS, 2009.]
[24] Reich P B, Walters M B, Ellsworth D S. From tropics to tundra: Global convergence in plant functioning [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94: 13730-13734.
[25] Haynes R J, Fraser P M, Tregurtha R J, et al. Size and activity of the microbial biomass and N, S and P availability in EW casts derived from arable and pastoral soil and arable soil amended with pant residues [J]. Pedobiologia, 1999, 43(6): 568-573.
[36] Loiseau P, Soussana J F. Effects of elevated CO2, temperature and N fertilization on nitrogen fluxes in a temperate grassland ecosystem [J]. Global Change Biology, 2000, 6: 953-965.
[27] 张璐, 黄建辉, 白永飞, 等. 氮素添加对内蒙古羊草草原净氮矿化的影响[J]. 植物生态学报, 2008, 33(3): 563-569.[ZHANG Lu, HUANG Jian-hui, BAI Yong-fei, et al. Effects of nitrogen addition on net nitrogen mineralization in Leymus Chinensis grassland, Inner Mongolia, China. Chinese Journal of Plant Ecology, 2008, 33(3): 563-569.]
[28] Kuzyakova Y, Friedel J K, Stahr K. Review of mechanisms and quantification of priming effects [J]. Soil Biology and Biochemistry, 2000, 32: 1485-1498.
[29] Kuzyakova Y. Review: Factors affecting rhizosphere priming effects [J]. Journal of Plant Nutrient and Soil Science, 2002, 165: 382-396.
[30] 原保忠, 王静, 赵松岭. 植物补偿作用机制探讨[J]. 生态学杂志, 1998, 17(5): 45-49.[YUAN Bao-zhong, WANG Jing, ZHAO Song-ling. An approach to the mechanism of plant compensation. Chinese Journal of Ecology, 1998, 17(5): 45-49.]
[31] Alward R D, Joern A. Plasticity and overcompensation in grass responses to herbivory [J]. Oecologia, 1993, 95: 358-364.
[32] Graaf A J V, Stahl J, Bakker J P. Compensatory growth of Festuca rubra after grazing: Can migratory herbivores increase their own harvest during staging? [J] Functional Ecology, 2005, 19: 961-969.
[33] Holland E A, Parton W J, Detling J K, et al. Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow [J]. American Naturalist, 1982, 140: 685-706.
[34] Belsky A J. Does herbivory benefit plants? A review of the evidence [J]. American Naturalist, 1986, 127: 870-892.
[35] Painter E, Belsky A J. Application of herbivory optimization theory to rangelands of the western United States [J]. Ecological Applications, 1993, 3: 2-9.
[36] 高英志, 韩兴国, 汪诗平. 放牧对草原土壤的影响[J]. 生态学报, 2004, 24(4): 790-797.[GAO Ying-zhi, HAN Xing-guo, WANG Shi-ping. The effects of grazing on grassland soils. Acta Ecologica Sinica, 2004, 24(4): 790-797.]
[37] Frank A B, Tanaka D L, Hofmann L, et al. Soil carbon and nitrogen of Northern Great Plains grasslands as influenced by long term grazing [J]. Journal of Range Management, 1995, 48: 470-474.
[38] 张蕴薇, 韩建国, 杨富裕. 华北农牧交错带地区放牧对草地土壤氮营养的影响[J]. 四川草原, 2005, 110: 7-9.[ZHANG Yun-wei, HAN Jian-guo, YANG Fu-yu. Effects of grazing intensity on soil nitrogen nutrient in the agro-pastoral transitional zone of North China. Journal of Sichuan Grassland, 2005, 110: 7-9.]
[39] SHAN Yu-mei, CHEN Di-ma, GUAN Xuan-xuan, et al. Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland [J]. Soil Biology and Biochemistry, 2011, 43: 1943-1954.
[40] SONG Ming-hua, XU Xing-liang, HU Qi-wu, et al. Interactions of plant species mediated plant competition for inorganic nitrogen with soil microorganisms in an alpine meadow [J]. Plant and Soil, 2007, 297: 127-137.
[41] 朱天鸿, 程淑兰, 方华军, 等. 青藏高原高寒草甸土壤CO2排放对模拟氮沉降的早期响应[J]. 生态学报, 2011, 31(10): 2687-2696.[ZHU Tian-hong, CHENG Shu-lan, FANG Hua-jun, et al. Early responses of soil CO2 emission to simulating atmospheric nitrogen deposition in an alpine meadow on the Qinghai-Tibetan Plateau. Acta Ecologia Sinica, 2011, 31(10): 2687-2696.]
[42] 高英志, 汪诗平, 韩兴国, 等. 退化草地恢复过程中土壤氮素状况以及与植被地上绿色生物量形成关系的研究[J]. 植物生态学报, 2004, 28(3): 285-293.[GAO Ying-zhi, WANG Shi-ping, HAN Xing-guo, et al. Soil nitrogen regime and the relationship between aboveground green phytobiomass and soil nitrogen fractions at different stocking rates in the Xilin River Basin, Inner Mongolia. Acta Phytoecologica Sinica, 2004, 28(3): 285-293.]
文章导航

/