专题论坛

基于遥感信息和净初级生产力的天然橡胶估产模型

展开
  • 1. 农业部 资源遥感与数字农业重点开放实验室, 北京 100081;
    2. 中国热带农业科学院 a.科技信息研究所/海南省热带作物信息技术应用研究重点实验室, b.热带农业经济研究所, 海南 儋州 571737;
    3. 海南农垦国营阳江农场, 海南 琼中 572928

收稿日期: 2011-11-06

  修回日期: 2012-05-10

  网络出版日期: 2012-09-20

基金资助

国家自然科学基金重点项目(40930101);农业部资源遥感与数字农业重点实验室开放基金(RDA1007);国家自然科学基金(41171328);海南省热带作物信息技术应用研究重点实验室开放基金(rdzwkfjj003)。

Estimation Model of Natural Rubber Yield Based on Net Primary Production and Remote Sensing

Expand
  • 1. Key Laboratory of Resources Remote Sensing & Digital Agriculture, Ministry of Agriculture, Beijing 100081, China;
    2. a. Institute of Scientific and Technical Information/Key Laboratory of Practical Research on Tropical Crops Information Technology in Hainan, b. Institute of Tropical Agricultural Economics, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China;
    3. Yangjiang Farm, Hainan State Farms, Qiongzhong 572928, China

Received date: 2011-11-06

  Revised date: 2012-05-10

  Online published: 2012-09-20

摘要

建立基于MODIS数据的天然橡胶净初级生产力遥感估算模型,利用2009年生长季(4—12月)250 m分辨率的MODIS数据和气象数据估算海南阳江农场天然橡胶的生长季净初级生产力, 通过天然橡胶的干物质分配率估算阳江农场天然橡胶的产胶潜力。用以树位为单元的地面实际干胶产量与已得到的天然橡胶林产胶潜力进行回归分析,建立天然橡胶干胶产量的估测模型。利用估产模型对阳江农场2010年7月的干胶产量进行模拟,用同期实际干胶产量对估产模型进行精度验证与实用性评价,结果显示7月估产模型均方根误差RMSE为1.78 g·m-2,相对均方根误差RMSEr为18.25%。研究表明,基于遥感信息和净初级生产力的天然橡胶估产模型具有较好的产量估测效果。

本文引用格式

李海亮, 罗微, 李世池, 戴声佩, 刘海清 . 基于遥感信息和净初级生产力的天然橡胶估产模型[J]. 自然资源学报, 2012 , 27(9) : 1610 -1621 . DOI: 10.11849/zrzyxb.2012.09.018

Abstract

A net primary productivity (NPP) model for natural rubber was established with 250 m?250 m MODIS remote images and meteorological data on the Yangjiang Farm at growing season from April to December 2009. And the potential productivity of natural rubber was estimated based on the NPP and the natural rubber allocation rate of dry matter. The natural rubber yield estimation model was established with actual rubber yield in each task and the potential productivity of natural rubber based on regression analysis. The accuracy of yield estimation model was validated by the actual rubber production data in July 2010 on the Yangjiang Farm. The root mean square error(RMSE) is 1.78 g穖-2, and the relative root mean square error(RMSEr)is 18.25%. The results show that the natural rubber yield estimation model based on remote sensing information and net primary productivity has a good effect.

参考文献

[1] Ruimy A, Saugier B, Dedieu G. Methodology for the estimation of terrestrial net primary production from remotely sensed data [J]. Journal of Geophysical Research, 1994, 99: 5263-5283.
[2] Potter C S, Randerson J, Field C B, et al. Terrestrial ecosystem production: a process model based on global satellite and surface data [J]. Global Biogeochemical Cycle, 1993, 7: 811-841.
[3] Prince S D, Goward S N. Global primary production: A remote sensing approach [J]. Journal of Biogeography, 1995, 22: 815-835.
[4] Veroustraete F, Sabbe H, Eerman E. Estimation of carbon mass fluxes over Europe using the C-FIX model and Euroflux data [J]. Remote Sensing of Environment, 2002, 83: 376-399.
[5] Lobell D B, Asner G P, Ortiz-Monasterio J I, et al. Remote sensing of regional crop production in the Yaqui Valley, Mexico: Estimates and uncertainties [J]. Agriculture, Ecosystems & Environment, 2003, 94: 205-220.
[6] Bastiaanssen W G M, Ali S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan [J]. Agriculture, Ecosystems & Environment, 2003, 94: 321-340.
[7] Tao F L, Yokozawa M, Zhang Z, et al. Remote sensing of crop production in China by production efficiency models: Models comparisons, estimates and uncertainties [J]. Ecological Modelling, 2005, 183(4): 385-396.
[8] 任建强, 陈仲新, 唐华俊, 等. 基于植物净初级生产力模型的区域冬小麦估产研究[J]. 农业工程学报, 2006, 22(5): 111-117.
[9] 任建强, 刘杏认, 陈仲新, 等. 基于作物生产量估计的区域冬小麦单产预测[J]. 应用生态学报, 2009, 20(4): 872-878.
[10] 中国热带农业科学院, 华南热带农业大学. 中国热带作物栽培学[M]. 北京: 中国农业出版社, 1998.
[11] 李海亮. 基于MODIS数据的石羊河流域植被覆盖时空变化研究. 兰州: 西北师范大学, 2009.
[12] Fensholt R, Sandholt I, Rasmussen M S. Evaluation of MODIS LAI, FAPAR and the relation between FAPAR and NDVI in a NDVI in semi-arid environment using in situ measurements [J]. Remote Sensing of Environment, 2004, 91(3/4): 490-507.
[13] Myneni R B, Privette J L, Running S W, et al. MODIS Leaf Area Index(LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation ( FPAR ) product (MOD15) algorithm theoretical basis document . http: //modis.gsfc.nasa.gov/data/atbd.1999.
[14] 吴文浩, 李明阳, 卜子汇. 基于开放式数据库的江苏省植被净生产力遥感估测方法研究[J]. 西北林学院学报, 2010, 25(5): 146-151.
[15] 朱文泉, 潘耀忠, 何浩, 等. 中国典型植被最大光利用率模拟[J]. 科学通报, 2006, 51(6): 700-706.
[16] Collatz G J, Ball J T, Grivet C. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a lam in a boundary layer [J]. Agricultural and Forest Meteorology, 1991, 54: 107-136.
[17] 周广胜, 张新时. 全球变化的中国气候-植被分类研究[J]. 植物学报, 1996, 38(1): 8-17.
[18] Narongrit C, Yasuoka Y. The use of Terra-MODIS data for estimating evapotranspiration and its change caused by global warming [J]. Environmental Informatics Archives, 2003(1): 505-511.
[19] 蔡福, 祝青林, 何洪林, 等. 中国月平均地表反照率的估算及其时空分布[J]. 资源科学, 2005, 27(1): 114-120.
[20] Makela H, Pekkarinen A. Estimation of forest stands volumes by Landsat TM imagery and stand-level field-inventory data [J]. Forest Ecology and Management, 2004, 196: 245-255.
[21] 何康, 黄宗道. 热带北缘天然橡胶树栽培[M]. 广州市: 广东科技出版社, 1987.
文章导航

/