资源评价

太仆寺旗2000-2008年EVI对气候及土地利用变化的响应

展开
  • 1. 北京师范大学 地表过程与资源生态国家重点实验室, 北京 100875;
    2. 北京师范大学 减灾与应急管理研究院, 北京 100875

收稿日期: 2011-12-09

  修回日期: 2012-02-27

  网络出版日期: 2012-07-20

基金资助

国家自然科学基金项目(202015)。

Responses of EVI to Climate and Land-use Variation in Taips County from 2000 to 2008

Expand
  • 1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China;
    2. Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China

Received date: 2011-12-09

  Revised date: 2012-02-27

  Online published: 2012-07-20

摘要

以位于北方农牧交错带的太仆寺旗为研究区,利用2000-2008年MODIS-EVI数据和周边45个气象站点同期月气温、降水资料,分析了近10 a该区EVI的时空变化及年最大EVI与气候因子的相关性。结合2000年和2005年的土地利用数据,分析了各地类EVI对气温、降水变化的响应及各地类变化过程对EVI变化的影响。结果表明:年最大EVI与6-7月平均气温呈显著负相关,与同期总降水呈显著正相关,相关系数均大于0.9;各地类EVI与气候因子相关性差异明显,退耕前,仅草地EVI对气候变化敏感,退耕后,耕地、林地EVI与气候因子相关性显著增强;耕地变草地、林地变耕地分别导致EVI减小2.27%和1.42%,林、草相互转变导致EVI分别减小0.71%和0.67%,说明退耕还林还草等措施未必促进植被恢复,受其他自然及人为因素影响。

本文引用格式

胡英敏, 高琼, 兰玉芳, 金东艳, 徐霞 . 太仆寺旗2000-2008年EVI对气候及土地利用变化的响应[J]. 自然资源学报, 2012 , (7) : 1200 -1213 . DOI: 10.11849/zrzyxb.2012.07.011

Abstract

The farming-pastoral zone in northern China has become one of the most vulnerable eco-regions due to the comprehensive effects of climate changes and human activities. As an integral component of ecosystem, vegetation cover dynamics indicated by various vegetation indices from long time series remote sensing data could be used to reflect the ecological and environmental changes. The Grain for Green Project is widely put forward by converting farmland into forests and grasslands, the evaluation of which as a result has become the hot spot of ecosystem researches. Identifying the distinctive impacts of climatic factors and land use management disturbances could help to make more objective assessment of vegetation restoration and guiding the follow-up ecological constructions. This study used Taips County, a typical region in the farming-pastoral zone, as the study area. Based on the data of MODIS-EVI, monthly mean air temperature and precipitation obtained from the nearby 45 weather stations, the spatial-temporal patterns of vegetation cover from 2000 to 2008 were explored. The correlation coefficients between the annual maximal EVI over the whole region and the climatic variables of different months during the growing periods were calculated. Together with the land use data in 2000 and 2005, when northern China was experiencing fast land use shift, we further analyzed the correlation between EVI and climatic variables for different land use types. And EVI changes caused by land use transitions were also studied. The results indicated that from 2000 to 2008, the annual maximal EVI fluctuated with an increasing trend and the vegetation in middle-east of the region grew better than that in the southwest. The average EVI over the whole region of July had a negative correlation with the mean air temperature of June and July and a positive correlation with the total precipitation of the two months. The correlation coefficients were both higher than 0.9, suggesting delayed and accumulative effects. The correlation between EVI and climatic variables of different land use types differed significantly. Before farmland conversions, only the EVI of grasslands had negative correlations with precipitation while after the abrupt land use changes from farmland to forests and grasslands, the EVI of farmland and forests both had higher correlation coefficients than grasslands, interpreting the non-identical results of intensive and extensive land use managements. Different land-use transition patterns resulted in different EVI changes. EVI decreased 2.27% and 1.42% respectively when farmland converted into grassland and forests converted into cropland. The inter-transitions between forests and grasslands also resulted in EVI decrease, pointing out the great uncertainties of environmental protective policies and vegetation restoration projects in case of other natural and human influences.

Key words: climate; land use; EVI; Taips

参考文献

[1] 伍光和, 王文瑞. 地域分异规律与北方农牧交错带的退耕还林还草[J]. 中国沙漠, 2002, 22(5): 439-442. [2] 赵哈林, 周瑞莲, 张铜会, 等. 我国北方农牧交错带的草地植被类型、特征及其生态问题[J]. 中国草地, 2003, 25(3): 1-8. [3] 刘洪来, 张卫华, 王堃, 等. 华北农牧交错带农田-草地界面土壤水分影响域分析[J]. 应用生态学报, 2009, 20(3): 659-664. [4] 杨嘉, 郭铌, 贾建华. 西北地区MODIS/NDVI与MODIS/EVI对比分析[J]. 干旱气象, 2007, 25(1): 38-43. [5] 信忠保, 许炯心, 郑伟. 气候变化和人类活动对黄土高原植被覆盖变化的影响[J]. 中国科学D辑, 2007, 37(11): 1504-1514. [6] 高志海, 李增元, 魏怀东, 等. 干旱地区植被指数(VI)的适宜性研究[J]. 中国沙漠, 2006, 26(2): 243-248. [7] Leprieur C, Kerr Y H, Mastorchio S, et al. Monitoring vegetation cover across semiarid regions: Comparison of remote observations from various scales [J]. International Journal of Remote Sensing, 2000, 21(2): 281-300. [8] Rouse J W, Haas R H, Schell J A, et al. Monitoring the vernal advancements and retrogradation (greenwave effect) of nature vegetation Final Rep. RSC 1978-4[R]. Texas: Texas A & M. University, 1974: 34. [9] Tucker C J, Townshend J R G, Goff T E. African land-cover classification using satellite data [J]. Science, 1985, 227(4685): 369-375. [10] 肖乾广, 陈维英. 用NOAA气象卫星的AVHRR遥感资料估算中国的净第一性生产力[J]. 植物学报, 1996, 38(1): 35-39. [11] Gao Q, Zhang X S. A simulation study of responses of the Northeast China Transect to elevated CO2 and climate change [J]. Ecological Applications, 1997, 7(2): 470-483. [12] Gao Q, Yu M. A model of regional vegetation dynamics and its application to the study of Northeast China Transect (NECT) responses to global change [J]. Biogeochemical Cycles, 1998, 12(2): 329-344. [13] 孙睿, 朱启疆. 中国陆地植被净第一性生产力及季节变化研究[J]. 地理学报, 2000, 55(1): 36-45. [14] Gao Q, Yu M, Yang X S. An analysis of sensitivity of terrestrial ecosystems in China to climatic change using spatial simulation [J]. Climatic Change, 2000, 47(4): 373-400. [15] 朴世龙, 方精云. 最近18年来中国植被覆盖的动态变化[J]. 第四纪研究, 2001, 21(4): 294-302. [16] Yu M, Gao Q, Liu Y H, et al. Responses of vegetation structure and primary production of a forest transect in eastern China to global change [J]. Global Ecology and Biogeograhpy, 2002, 11(3): 223-236. [17] 杨胜天, 刘昌明, 孙睿. 近20年来黄河流域植被覆盖变化分析[J]. 地理学报, 2002, 57(6): 679-684. [18] Nemani R R. Climate-driven increases in global terrestrial net primary production from 1982 to 1999 [J]. Science, 2003, 300(5625): 1560-1563. [19] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413-424. [20] Pettorelli N, Vik J O, Mysterud A, et al. Using the satellite-derived NDVI to assess ecological responses to environmental change [J]. Trends in Ecology and Evolution, 2005, 20(9): 503-510. [21] Nicholson S E., Farrar T J. The influence of soil type on the relationship between NDVI, rainfall and soil moisture in semiarid Bostwana [J]. Remote Sensing, 1994, 50: 107-120. [22] Richard Y I P. A statistical study of NDVI sensitivity to seasonal and interannual rainfall variation in southern Africa[J]. International Journal of Remote Sensing, 1998, 19: 2907-2920. [23] Yang L M, Wylie B K, Larry L, et al. An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the U. S. Northern and Central Great Plains [J]. Remote Sensing of Environment, 1998, 65: 25-37. [24] 孙红雨, 王长耀, 牛铮, 等. 中国地表植被覆盖变化及其与气候因子关系——基于NOAA时间序列数据分析[J]. 遥感学报, 1998, 2(3): 204-210. [25] 高志强, 刘纪远. 基于遥感和GIS的中国植被指数变化的驱动因子分析及模型研究[J]. 气候与环境研究, 2000, 5(2): 156-164. [26] 陈云浩, 李晓兵, 史培军. 1983-1992年中国陆地NDVI变化的气候因子驱动分析[J]. 植物生态学报, 2001, 25(6): 716-720. [27] 王正兴, 刘闯, Huete A. 植被指数研究进展: 从AVHRR-NDVI到MODIS-EVI[J]. 生态学报, 2003, 23(5): 979-987. [28] 赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003. [29] Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices [J]. Remote Sensing of Environment, 2002, 83(1/2): 195-213. [30] 赵冰茹, 马龙. 基于MODIS EVI的内蒙古草地多源信息综合分类研究[J]. 浙江大学学报: 农业与生命科学版, 2007, 33(3): 342-347. [31] Xiao X M, Hollinger D, Aber J. Satellite-based modeling of gross primary production in an evergreen needleaf forest [J]. Remote Sensing of Environment, 2004, 89(4): 519-534. [32] Xiao X M, Zhang Q Y, Braswell B. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data [J]. Remote Sensing of Environment, 2004, 91(2): 256-270. [33] Zhang X, Sun R, Zhang B, et al. Land cover classification of the North China Plain using MODIS-EVI time series [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(4): 476-484. [34] 彭代亮, 黄敬峰, 王秀珍. 基于MODIS-EVI区域植被季节变化与气象因子的关系[J]. 应用生态学报, 2007, 18(5): 983-989. [35] Vanacker V, Linderman M, Lupo F, et al. Impact of short term rainfall fluctuation on interannual land cover change in sub-Saharan Africa[J]. Global Ecology and Biogeography, 2005, 14(2): 123-135. [36] Jahan N, Gan T Y. Modelling the vegetation-climate relationship in a boreal mixed wood forest of Alberta using normalized difference and enhanced vegetation indices [J]. International Journal of Remote Sensing, 2011, 32(2): 313-335. [37] Brando P M, Goetz S J, Baccini A, et al. Seasonal and interannual variability of climate and vegetation indices across the Amazon [J]. Proceedings of the National Academy of Sciences, 2010, 107(33): 14685-14690. [38] Huete A R, Dian K, Shimabukuro Y E, et al. Amazon rainforests green-up with sunlight in dry season [J]. Geophysical Research Letters, 2006, 33(4): 1-4. [39] 黄晓东, 李霞, 梁天刚. 北疆地区不同草地类型MODIS植被指数变化动态及其气候因子的关系[J]. 兰州大学学报: 自然科学版, 2007, 43(3): 42-47. [40] 邓祥征, 刘纪远, 战金艳, 等. 太仆寺旗土地利用变化时空格局的动态模拟[J]. 地理研究, 2004, 23(2): 147-157. [41] Liu H Q. and Huete A R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 457-465. [42] 刘纪远, 刘明亮, 庄大方, 等. 中国近期土地利用变化的空间格局分析[J]. 中国科学D辑, 2002, 32(12): 1031-1043. [43] 刘纪远, 张增祥, 徐新良, 等. 21世纪初中国土地利用变化的空间格局与驱动力分析[J]. 地理学报, 2009, 64(12): 1411-1420. [44] 李丽娜. 基于陕西省温度和降水的空间变化及其与NDVI的相关性研究. 西安: 西北大学, 2009. [45] 王军邦, 陶健, 李贵才, 等. 内蒙古中部MODIS植被动态监测分析[J]. 地球信息科学学报, 2010, 12(6): 835-842. [46] 宋富强, 刑开雄, 刘阳, 等. 基于MODIS/NDVI的陕北地区植被动态监测与评价[J]. 生态学报, 2011, 31(2): 354-363. [47] 李晓兵, 史培军. 中国典型植被类型NDVI动态变化与气温、降水变化的敏感性分析[J]. 植物生态学报, 2000, 24(3): 379-382. [48] 陈晓光, 李剑萍, 李志军, 等. 宁夏盐池近年来植被与气候变化分析[J]. 生态学报, 2006, 26(5): 1516-1522. [49] 周洪建, 王静爱, 岳耀杰, 等. 人类活动对植被退化/恢复影响的空间格局——以陕西省为例[J]. 生态学报, 2009, 29(9): 4847-4856. [50] 龙慧灵, 李晓兵, 王宏, 等. 内蒙古草原区植被净初级生产力及其与气候的关系[J]. 生态学报, 2010, 30(5): 1367-1378. [51] 周洪建, 王静爱, 李睿, 等. 基于SPOTveg NDVI和降水序列的退耕还林(草)效果分析[J]. 水土保持学报, 2008, 22(4): 70-74. [52] Scanlon T M, Albertson J D, Caylor K K, et al. Determining land surface fractional cover from NDVI and rainfall time series for a savanna ecosystem [J]. Remote Sensing of Environment, 2002, 82(2): 376-388. [53] Jackson R B, Jobbagy E G, Avissar R, et al. Trading water for carbon with biological carbon sequestration [J]. Science, 2005, 310(5756): 1944-1947. [54] Chisholm R A. Trade-offs between ecosystem services: Water and carbon in a biodiversity hotspot [J]. Ecological Economics, 2010, 69(10): 1973-1987. [55] 王朗, 傅伯杰, 吕一河, 等. 生态恢复背景下陕北地区植被覆盖的时空变化[J]. 应用生态学报, 2010, 21(8): 2109-2116. [56] 李瑞, 张克斌, 王百田, 等. 北方农牧交错带不同植被保护及恢复措施物种多样性研究[J]. 生态环境, 2006, 15(5): 1035-1041.
文章导航

/