资源评价

黑河流域参考蒸散量的时空变化特征及影响因素的定量分析

展开
  • 1. 兰州大学 资源环境学院, 干旱区气候变化与水循环研究中心 兰州 730000;
    2. 兰州大学 信息科学与工程学院, 兰州 730000

收稿日期: 2011-07-26

  修回日期: 2011-10-27

  网络出版日期: 2012-06-20

基金资助

国家自然科学基金项目(40901021,50879033);高等学校博士学科点专项科研基金项目(20090211110025);兰州大学中央高校基本科研业务费专项资金;博士点基金(20100211120006)。

Temporal and Spatial Variation Characteristics and Quantification of the Affect Factors for Reference Evapotranspiration in Heihe River Basin

Expand
  • 1. College of Earth and Environmental Science, Center for Climate Change and Hydrologic Cycle in Arid Region, Lanzhou University, Lanzhou 730000, China;
    2. College of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China

Received date: 2011-07-26

  Revised date: 2011-10-27

  Online published: 2012-06-20

摘要

利用黑河流域及周边地区14个气象站的1960—2009年逐日气象资料,基于FAO推荐的 Penman-Monteith模型分析了黑河流域近50 a来潜在年、 季参考蒸散量ET0的时空分布特征,同时利用敏感分析计算了流域内不同区域典型气象站ET0对各气候要素的敏感系数,并结合各气候要素的多年相对变化定量探讨了导致ET0变化的主导因素。结果表明:黑河流域年ET0表现出明显的南北差异,亦即从南到北呈增大趋势,上游祁连山区年ET0约568~700 mm,中游走廊平原约800~900 mm,下游的金塔、 鼎新一带约1 000 mm,额济纳地区则高达1 150 mm以上。各季节ET0亦呈北多南少特征,且ET0的年内分布以夏季最多,春季次之,秋冬最少。近50 a来,黑河流域年、 季平均ET0整体呈减小趋势,但亦存在区域差异,其中上游ET0略有增加,而中下游以减小趋势为主。就年平均敏感系数而言,上游的托勒站和中游的高台站皆对相对湿度敏感性最强,而下游的额济纳旗对平均风速最为敏感。不同站点各季节/月ET0对气候要素的敏感性有所差异。风速是引起ET0变化的主导因素,相对湿度和日照时数的贡献则较小。

本文引用格式

马宁, 王乃昂, 王鹏龙, 孙彦猛, 董春雨 . 黑河流域参考蒸散量的时空变化特征及影响因素的定量分析[J]. 自然资源学报, 2012 , 27(6) : 975 -989 . DOI: 10.11849/zrzyxb.2012.06.009

Abstract

Based on the daily data from 1960 to 2009 of 14 meteorological stations in Heihe River Basin and the surrounding areas, spatial and temporal distributions of the reference evapotranspiration in the Heihe River Basin were analyzed after calculation with the Penman-Monteith method recommended by FAO. Nondimensional relative sensitivity coefficients of reference evapotranspiration to climate elements of three representative stations in different regions were calculated to research the dominant factor of ET0’s change combined with the relative change of the climate element. The results showed that obvious regional difference of annual and seasonal ET0 in the Heihe River Basin and the former is estimated to be about 568-700 mm in the upper course, 800-900 mm in the Hexi corridor plain and over 1000 mm in the lower course. The ET0 of summer is the most in a year, followed by spring, autumn and winter is the least. In general, the annual and seasonal ET0 all decreased in past the 50 years, but also with regional difference, which increased slightly in the upper course and decreased in middle and lower course. The relative humidity is the most sensitive variable to annual ET0 in Tuole and Gaotai which belong to the upper and middle course, however, wind speed is the most sensitive variable in Ejina which belongs to the lower course. The seasonal and monthly sensitivity of climate elements in the three sites have a little difference. Wind speed is the dominant factor causing change of ET0, however, the relative humidity and sunshine duration contributed little.

参考文献

[1] 刘昌明, 孙睿. 水循环的生态学方面: 土壤-植被-大气系统水分能量平衡研究进展[J]. 水科学进展, 1999, 10(3): 251-259.
[2] 谭绩文, 沈永平, 张发旺, 等. 水科学概论[M]. 北京: 科学出版社, 2010: 83-206.
[3] Rosenberg N J, Blad B L, Verma S B. Microclimate: The Biological Environment [M]. New York: Wiley-Interscience Press, 1983: 1-528.
[4] Shukla J, Mintz Y. The influence of land surface evapotranspiration on earth’s climate [J]. Science, 1982, 215: 1498-1501.
[5] 孙岚, 吴国雄. 陆面蒸散对气候变化的影响[J]. 中国科学D辑, 2001, 31(1): 59-69.
[6] Penman H L. Natural evaporation from open water, bare soil and grass [J]. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1948, 193: 120-146.
[7] Jensen M E, Wright J L, Pratt B J. Estimation soil moisture depletion from climate, crop and soil data [J]. Transaction of the ASAE, 1971, 14(5): 954-959.
[8] Doorenbos J, Pruitt W O. Guidelines for Prediction Crop Water Requirements [M]. Rome: Food and Agriculture Organization of the United Nations, 1977: 1-179.
[9] Allen R G, Jensen M E, Wright J L, et al. Operational estimates of reference evapotranspiration [J]. Agronomy Journal, 1989, 81: 650-662.
[10] Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements [M]. Rome: United Nations Food and Agriculture Organization, 1998.
[11] Espadafor M, Lorite I J, Gavilan P, et al. An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in southern Spain [J]. Agricultural Water Management, 2011, 98: 1045-1061.
[12] Naoum S, Tsanis I K. Hydroinformatics in evapotranspiration estimation [J]. Environmental Model & Software, 2003, 18(3): 261-271.
[13] 吴绍洪, 尹云鹤, 郑度, 等. 青藏高原近30年气候变化趋势[J]. 地理学报, 2005, 60(1): 3-11.
[14] Zhang Y Q, Liu C M, Tang Y H, et al. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau [J]. Journal of Geophysical Research, 2007, 112, D12110, doi: 10. 1029/2006JD008161.
[15] 孙小舟, 封志明, 杨艳昭. 西辽河流域1952年—2007年参考作物蒸散量的变化趋势[J]. 资源科学, 2009, 31(3): 479-484.
[16] 曾丽红, 宋开山, 张柏, 等. 近60年来东北地区参考作物蒸散量时空变化[J]. 水科学进展, 2010, 21(2): 194-200.
[17] 曹雯, 申双和, 段春峰. 西北地区生长季参考作物蒸散变化成因的定量分析[J]. 地理学报, 2011, 66(3): 407-415.
[18] 贾文雄, 何元庆, 王旭峰, 等. 祁连山及河西走廊潜在蒸发量的时空变化[J]. 水科学进展, 2009, 20(2): 159-167.
[19] 张明军, 李瑞雪, 贾文雄, 等. 中国天山山区潜在蒸发量的时空变化[J]. 地理学报, 2009, 64(7): 798-806.
[20] Xu C Y, Gong L B, Jiang T, et al. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment [J]. Journal of Hydrology, 2006, 327: 81-93.
[21] 史建国, 严昌荣, 何文清, 等. 黄河流域潜在蒸散量时空格局变化分析[J]. 干旱区研究, 2007, 24(6): 773-778.
[22] 左德鹏, 徐宗学, 程磊, 等. 渭河流域潜在蒸散量时空变化及其突变特征[J]. 资源科学, 2011, 33(5): 975-982.
[23] 刘钰, Pereira L S, Teixeira J L, 等. 参照腾发量的新定义及计算方法对比[J]. 水利学报, 1997, 28(6): 27-33.
[24] 刘绍民, 孙中平, 李小文, 等. 蒸散量测定与估算方法的对比研究[J]. 自然资源学报, 2003, 18(2): 161-167.
[25] Gao G, Chen D L, Ren G Y, et al. Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956-2000 [J]. Journal of Geographical Sciences, 2006, 16(1): 3-12.
[26] Thomas A. Spatial and temporal characteristics of potential evapotranspiration trends over China [J]. International Journal of Climatology, 2000, 20: 381-396.
[27] YIN Yun-he, WU Shao-hong, DAI Er-fu. Determining factors in potential evapotranspiration changes over China in the period 1971-2008 [J]. Chinese Science Bulletin, 2010, 55(29): 3329-3337.
[28] 金蓉, 石培基, 王雪平, 等. 张掖绿洲水循环经济发展探讨[J]. 中国沙漠, 2004, 24(6): 802-808.
[29] 肖生春, 肖洪浪, 蓝永超, 等. 近50a来黑河流域水资源问题与流域集成管理[J]. 中国沙漠, 2011, 31(2): 529-535.
[30] 王钧, 蒙吉军. 黑河流域近60年来径流量变化及影响因素[J]. 地理科学, 2008, 28(1): 83-88.
[31] 李森, 李凡, 孙武, 等. 黑河下游额济纳绿洲现代荒漠化过程及其驱动机制[J]. 地理科学, 2004, 24(1): 61-67.
[32] 程国栋, 肖洪浪, 徐中民, 等. 中国西北内陆河水问题及其应对策略——以黑河流域为例[J]. 冰川冻土, 2006, 28(3): 406-413.
[33] 陆桂华, 吴志勇, 何海. 水文循环过程及定量预报[M]. 北京: 科学出版社, 2010: 1-359.
[34] 倪广恒, 李新红, 丛振涛, 等. 中国参考作物腾发量时空变化特性分析[J]. 农业工程学报, 2006, 22(5): 1-4.
[35] 李星敏, 卢玲, 李新, 等. 黑河流域日蒸散发遥感估算研究[J]. 高原气象, 2010, 29(1): 109-114.
[36] 吴锦奎, 丁永建, 王根绪, 等. 干旱区人工绿洲间作农田蒸散研究[J]. 农业工程学报, 2006, 22(9): 16-20.
[37] 马开玉, 丁裕国, 屠其璞, 等. 气候统计原理与方法[M]. 北京: 气象出版社, 1993: 462-464.
[38] 左大康, 覃文汉. 国外蒸发研究的进展[J]. 地理研究, 1988, 7(1): 86-94.
[39] YIN Yun-he, WU Shao-hong, ZHENG Du, et al. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China [J]. Agricultural Water Management, 2008, 95: 77-84.
[40] 林本达, 黄建平. 动力气候学引论[M]. 北京: 气象出版社, 1994: 41-51.
[41] McCuen R H. A sensitivity and error analysis of procedures used for estimating evaporation [J]. Water Resource Bulletin, 1974, 10(3): 486-498.
[42] Coleman G, DeCoursey D G. Sensitivity and model variance analysis applied to some evaporation and evapotranspiration models [J]. Water Resource Research, 1976, 12(5): 873-879.
[43] Gong L B, Xu C Y, Chen D L, et al. Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin[J]. Journal of Hydrology, 2006, 329: 620-629.
[44] 符淙斌, 王强. 气候突变的定义和检测方法[J]. 大气科学, 1992, 16(4): 482-493.
[45] 李林, 王振宇, 汪青春. 黑河上游地区气候变化对径流量的影响研究[J]. 地理科学, 2006, 26(1): 40-46.
[46] 刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5): 579-588.
[47] Hulme M, Zhao Z C, Jiang T. Recent and future climate change in East Asia [J]. International Journal of Climatology, 1994, 14: 637-658.
[48] Robock A, Vinnikov K Y, Srinivasan G, et al. The global soil moisture data bank [J]. Bulletin of the American Meteorological Society, 2000, 81: 1281-1299.
[49] Roderick M L, Farquhar G D. Changes in Australian pan evaporation from 1970 to 2002 [J]. International Journal of Climatology, 2004, 24(9): 1077-1090.
[50] Peterson T C, Golubev V S, Groisman P Y. Evaporation losing its strength [J]. Nature, 1995, 377: 687-688.
[51] Bandyopadhyay A, Bhadra A, Raghuwanshi N S, et al. Temporal trends in estimates of reference evapotranspiration over India [J]. Journal of Hydrologic Engineering, 2009, 14(5): 508-518.
[52] Roderick M L, Farquhar G D. Changes in New Zealand pan evaporation since the 1970s [J]. International Journal of Climatology, 2005, 25(15): 2031-2039.
[53] Gan T W. Hydroclimatic trends and possible climatic warming in the Canadian prairies [J]. Water Resources Research, 1998, 34(11): 3009-3015.
[54] Tebakari T, Yoshitani J, Suvanpimol C. Time-space trend analysis in pan evaporation over Kingdom of Thailand [J]. Journal of Hydrologic Engineering, 2005, 10(3): 205-215.
[55] Brutsaert W, Parlange M B. Hydrologic cycle explains the evaporation paradox [J]. Nature, 1998, 396: 30.
[56] Stanhil G, Cohen S. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable cause and possible agricultural consequence [J]. Agricultural and Forest Meteorology, 2001, 107(4): 255-278.
[57] Wild M, Gilgen H, Roesch A, et al. From dimming to brightening: Decade changes in solar radiation at earth’s surface [J]. Science, 2005, 308: 847-850.
[58] McVicar T, Rodercik M, Donohue R, et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation [J]. Journal of Hydrology, 2012, doi: 10.1016/jjhydrol.2011.10.024.
[59] 刘园, 王颖, 杨晓光, 等. 华北平原参考作物蒸散量变化特征及气候影响因素[J]. 生态学报, 2010, 30(4): 923-932.
[60] Jiang Y, Luo Y, Zhao Z C, et al. Changes in wind speed over China during 1956-2004 [J]. Theoretical and Applied Climatology, 2010, 99(3): 421-430.
[61] 叶笃正, 丑纪范, 刘纪远, 等. 关于我国华北沙尘天气的成因与治理对策[J]. 地理学报, 2000, 55(5): 513-521.
[62] 施能, 朱乾根. 北半球大气环流特征量的长期趋势及年代际变化[J]. 南京气象学院学报, 1996, 19(3): 283-289.
[63] Dixon K W, Delworth T L, Knutson T R. A comparison of climate change simulations produced by two GFDL coupled climate models [J]. Global and Planetary Change, 2003, 37: 81-102.
[64] 卢爱刚, 庞德谦, 何元庆, 等. 全球升温对中国区域温度纬向梯度的影响[J]. 地理科学, 2006, 26(3): 345-350.
[65] 赵宗慈, 罗勇, 江滢. 全球大风在减少吗?[J] 气候变化研究进展, 2011, 7(2): 149-151.
文章导航

/