资源生态

不同量秸秆覆盖还田对土壤活性有机碳及碳库管理指数的影响

展开
  • 1. 河南理工大学, 河南 焦作 454003;
    2. 西北农林科技大学 中国旱区节水农业研究院, 陕西 杨凌 712100;
    3. 河南省农业厅, 郑州 450008

收稿日期: 2011-07-20

  修回日期: 2011-11-02

  网络出版日期: 2012-06-20

基金资助

国家"十一五"科技支撑项目(2006BAD29B03);河南理工大学博士基金博士后基金。

Effects of Different Rates of Straw Mulching and Returning to Field on Soil Labile Organic Carbon and Carbon Pool Management Index

Expand
  • 1. Henan Polytechnic University, Jiaozuo 454003, China;
    2. The Chinese Arid Area Research Institute of Water-saving Agriculture, Northwest A & F University, Yangling 712100, China;
    3. The Agriculture Department of Henan Province, Zhengzhou 450008, China

Received date: 2011-07-20

  Revised date: 2011-11-02

  Online published: 2012-06-20

摘要

为探明渭北旱塬不同秸秆覆盖量对春玉米田土壤活性有机碳(LOC)、 碳库管理指数(CMI)和作物产量的影响,于2007—2010年在陕西合阳县旱农试验站进行定位试验,以不覆盖为对照(CK),设置了3个水平秸秆覆盖量处理:4 500 kg/hm2(S1)、 9 000 kg/hm2(S2)和13 500 kg/hm2(S3)。结果表明,0~20 cm土层,与CK相比,S1、 S2和S3总有机碳(TOC)质量分数分别提高5.08%、 14.12%和28.03%(P<0.05);活性有机碳(LOC)分别显著提高19.20%、 44.02%和23.50%(P<0.05);碳库管理指数(CMI)分别显著提高20.94%、 46.86%和50.21%(P<0.05)。春玉米产量分别与LOC和CMI显著相关(P<0.05),而与TOC则无显著相关性。研究表明,LOC和CMI较TOC更能灵敏、 客观地反映渭北旱塬不同量秸秆覆盖还田对土壤碳库质量的影响,且秸秆覆盖量以9 000 kg/hm2为宜。

本文引用格式

蔡太义, 黄会娟, 黄耀威, 路文涛, 贾志宽, 杨宝平 . 不同量秸秆覆盖还田对土壤活性有机碳及碳库管理指数的影响[J]. 自然资源学报, 2012 , 27(6) : 964 -974 . DOI: 10.11849/zrzyxb.2012.06.008

Abstract

A field experiment (2007-2010) was conducted at the Heyang Dryland Farming Experimental Station in Shaanxi Province of China to determine the effects of straw mulch rates on soil labile organic matter (LOC), carbon management index (CMI) and spring maize (Zea mays L.) yield. Maize straw at rates of 0 (CK), 4500 (S1), 9000 (S2) and 13500 kg/hm2(S3) was placed on field plots. The results indicated that soil organic carbon (TOC) content of S1, S2 and S3 treatments increased by 5.08%, 14.12% and 28.03%, respectively, compared with the CK at 0-20 cm soil layer; the LOC content increased by 19.20%, 44.02% and 23.50%, respectively; the CMI increased by 20.94%, 46.86% and 50.21%, respectively. Spring maize yield was found significantly (P<0.05) related to the LOC and CMI, while showed no significant correlations with the TOC. It was concluded that the LOC and CMI could reflect more rapidly and objectively the effects of different rates of straw mulch on soil carbon pool and maize yields more than TOC for the Weibei Dry Highland in China, besides, the treatment with 9000 kg/hm2 of straw mulch is preferable。

参考文献

[1] 朱自玺, 方文松, 赵国强, 等. 麦秸和残茬覆盖对夏玉米农田小气候的影响[J]. 干旱地区农业研究, 2000, 18(2): 19-24.
[2] 蔡太义, 贾志宽, 杨宝平, 等. 不同秸秆覆盖量对春玉米冠气温差和叶水势日变化的影响[J]. 灌溉排水学报, 2010, 29(6): 10-13.
[3] Unger P. Straw mulch effects on soil temperatures and sorghum germination and growth [J]. Agronomy Journal, 1978, 70(5): 858-864.
[4] 蔡太义, 贾志宽, 黄耀威. 中国旱作农区不同量秸秆覆盖综合效应研究进展I. 不同量秸秆覆盖的农田生态环境效应[J]. 干旱地区农业研究, 2011, 9(5): 63-68.
[5] Sharma P, Abrol V, Sharma R K. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize-wheat rotation in rained subhumid inceptisols, India [J]. European Journal of Agronomy, 2011, 34(1): 46-51.
[6] Unger P. Straw-mulch rate effect on soil water storage and sorghum yield [J]. Soil Science Society of America Journal, 1978, 42(3): 486-491.
[7] 赵聚宝, 梅旭荣, 薛军红, 等. 秸秆覆盖对旱地作物水分利用效率的影响[J]. 中国农业科学, 1996, 29(2): 59-66.
[8] 蔡太义, 贾志宽, 孟蕾, 等. 渭北旱塬不同秸秆覆盖量对土壤水分和春玉米产量的影响[J]. 农业工程学报, 2011, 27(3): 43-48.
[9] 杜守宇, 田恩平, 温敏, 等. 秸秆覆盖还田的整体功能效应与系列化技术研究[J]. 干旱地区农业研究, 1994, 12(2): 88-94.
[10] 张志国, 徐琪, Blevins R L. 长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J]. 土壤学报, 1998, 35(3): 384-391.
[11] 苏衍涛, 王凯荣, 刘迎新, 等. 稻草覆盖对红壤旱地土壤温度和水分的调控效应[J]. 农业环境科学学报, 2008, 27(2): 670-676.
[12] 王小彬, 蔡典雄, 张镜清, 等. 旱地玉米秸秆还田对土壤肥力的影响[J]. 中国农业科学, 2000, 33(4): 54-61.
[13] 郭曼, 郑粉莉, 和文祥, 等. 黄土丘陵区不同退耕年限植被多样性变化及其与土壤养分和酶活性的关系[J]. 土壤学报, 2010, 47(5): 979-986.
[14] 李倩, 张睿, 贾志宽. 玉米旱作栽培条件下不同秸秆覆盖量对土壤酶活性的影响[J]. 干旱地区农业研究, 2009, 27(4): 152-154.
[15] 蔡太义. 渭北旱塬不同秸秆覆盖量对农田环境和春玉米生理生态的影响. 杨凌: 西北农林科技大学, 2011.
[16] 蔡太义, 贾志宽, 黄耀威, 等. 不同秸秆覆盖量对春玉米田蓄水保墒及节水效益的影响[J]. 农业工程学报, 2011, 27(增刊1): 238-243.
[17] Wang Huixiao, Liu Changming,Zhang Lu. Water-saving agriculture in China: An overview [J]. Advances in Agronomy, 2002, 75(2): 135-171.
[18] Lal R. Beyond Copenhagen: Mitigating climate change and achieving food security through soil carbon sequestration [J]. Food Security, 2010, 2(2): 169-177.
[19] 陈尚洪, 朱钟麟, 刘定辉, 等. 秸秆还田和免耕对土壤养分及碳库管理指数的影响研究[J]. 植物营养与肥料学报, 2008, 14(4): 806-809.
[20] Jacobsen K L, Escalante C L, Jordan C F. Economic analysis of experimental organic agricultural systems on a highly eroded soil of the Georgia Piedmont, USA [J]. Renewable Agriculture and Food Systems, 2010, 25(4): 296-308.
[21] Jagadamma S, Lal R. Distribution of organic carbon in physical fractions of soils as affected by agricultural management [J]. Biology and Fertility of Soils, 2010, 46(6): 543-554.
[22] Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466.
[23] Lefroy R D B, Blair G J, Strong W M. Changes in soil organic-matter with cropping as measured by organic-carbon fractions and 13C natural isotope abundance [J]. Plant and Soil, 1993, 156: 399-402.
[24] Conteh A, Blair G J, Macleod D A, et al. Soil organic carbon changes in cracking clay soils under cotton production as studied by carbon fractionation [J]. Australian Journal of Agricultural Research, 1997, 48: 1049-1058.
[25] Lal R, Griffin M, Apt J, et al. Managing soil carbon [J]. Science, 2004, 304(5669): 393.
[26] Verma B C, Datta S P, Rattan R K, et al. Monitoring changes in soil organic carbon pools, nitrogen, phosphorus, and sulfur under different agricultural management practices in the tropics [J]. Environmental Monitoring and Assessment, 2010, 171(1/4): 579-593.
[27] 罗友进, 王子芳, 高明, 等. 不同耕作制度对紫色水稻土活性有机质及碳库管理指数的影响[J]. 水土保持学报, 2007, 21(5): 55-58.
[28] 李琳, 李素娟, 张海林, 等. 保护性耕作下土壤碳库管理指数的研究[J]. 水土保持学报, 2006, 20(3): 106-109.
[29] 王晶, 张仁陟, 李爱宗. 耕作方式对土壤活性有机碳和碳库管理指数的影响[J]. 干旱地区农业研究, 2008, 26(6): 8-12.
[30] 徐明岗, 于荣, 王伯仁. 长期不同施肥下红壤活性有机质与碳库管理指数变化[J]. 土壤学报, 2006, 43(5): 723-729.
[31] 沈宏, 曹志洪, 王志明. 不同农田生态系统土壤碳库管理指数的研究[J]. 自然资源学报, 1999, 14(3): 206-210.
[32] 邱莉萍, 张兴昌, 程积民. 土地利用方式对土壤有机质及其碳库管理指数的影响[J]. 中国环境科学, 2009, 29(1): 84-89.
[33] 戴全厚, 刘国斌, 薛萐, 等. 侵蚀环境坡耕地改造对土壤活性有机碳与碳库管理指数的影响[J]. 水土保持通报, 2008, 28(4): 17-21.
[34] 鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2005.
[35] Blair G, Lefroy R, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466.
[36] Cook H, Valdes G, Lee H. Mulch effects on rainfall interception, soil physical characteristics and temperature under zea mays L [J]. Soil and Tillage Research, 2006, 91(1/2): 227-235.
[37] 高云超, 朱文珊, 陈文新. 秸秆覆盖免耕土壤微生物生物量与养分转化的研究[J]. 中国农业科学, 1994, 27(6): 41-49.
[38] 高亚军, 李生秀. 旱地秸秆覆盖条件下作物减产的原因及作用机制分析[J]. 农业工程学报, 2005, 21(7): 15-19.
[39] 杨景成, 韩兴国, 黄建辉, 等. 土壤有机质对农田管理措施的动态响应[J]. 生态学报, 2003, 23(4): 787-796.
[40] 张乃生, 薛宗让, 洛希图, 等. 旱地玉米免耕覆盖土壤温度效应[J]. 山西农业科学, 1994, 22(3): 13-16.
[41] 韩思明. 黄土高原旱作农田降水资源高效利用的技术途径[J]. 干旱地区农业研究, 2002, 20(1): 1-9.
文章导航

/