资源生态

植被对黄土高原坡沟系统重力侵蚀调控机理研究

展开
  • 1. 中国地质调查局 西安地质调查中心, 西安710054;
    2. 陕西省环境科学研究院, 西安710061;
    3. 中国科学院 地理科学与资源研究所陆地水循环及地表过程重点实验室, 北京100101

收稿日期: 2011-09-05

  修回日期: 2011-12-08

  网络出版日期: 2012-06-20

基金资助

国家自然科学基金项目(40872208,40971161,41071182);中国博士后基金(2011M501445);陕西省自然科学基础研究计划项目(2012JQ5001);国土资源部科专项(201111020)。

Mechanism of Vegetation Regulating on Gravitational Erosion in the Slope-gully System on Loess Plateau

Expand
  • 1. Xi’an Center of Geological Survey, China Geological Survey, Xi’an 710054 China;
    2. Shaanxi Provincial Academy of Environmental Science, Xi’an 710061;
    3. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2011-09-05

  Revised date: 2011-12-08

  Online published: 2012-06-20

摘要

采用有限差分软件FLAC3D对黄土高原坡沟系统及植被覆盖下重力侵蚀机理进行探索,对有无植被的坡沟系统应力场、 位移场和塑性区分布进行数值模拟,阐明了植被根系措施减缓重力侵蚀作用机制。结果表明,坡沟系统上部位移以"沉降"模式为主,下部位移以"剪切"模式为主,沟头溯源区是坡沟系统重力侵蚀最为强烈的部位;剪切塑性区域主要分布于坡面和沟坡大部分区域,张拉塑性区域主要分布于梁峁顶和梁峁坡上部;有植被覆盖时,根系加固作用改善了坡面浅层土体应力,有效降低了坡面土体的应力集中;减小了坡沟系统坡面浅层土体位移,使水平位移减少15%,铅垂位移减少2.5%;并减少了塑性屈服区体积,使剪切塑性区减少11.48%,张拉塑性区减少83.99%;减轻了重力侵蚀的破坏程度,但并未改变坡沟系统以剪切破坏为主的屈服模式。该研究为更好理解植被根系调控重力侵蚀研究提供了新的技术方法。

本文引用格式

于国强, 张霞, 张茂省, 裴亮 . 植被对黄土高原坡沟系统重力侵蚀调控机理研究[J]. 自然资源学报, 2012 , 27(6) : 922 -932 . DOI: 10.11849/zrzyxb.2012.06.004

Abstract

Mechanism of gravitational erosion in the slope-gully system and the root reinforcement reduction mechanism of the Loess Plateau was explored with the aid of the finite difference software, Flac3D, while numerical simulation of stress field and displacement field and plastic yielded zone with and without vegetation, and the reduction mechanism of root reinforcement was clarified. Results show that the displacement in the upper part of the slope-gully system appears mainly in the form of "settlement", and the displacement in the lower part appears mainly in the form of "shear", gully head traceability areas are most susceptible to gravitational erosion. The shear plastic zone is mainly distributed in most area of slope and gully slope, and the tension plastic zone is mainly distributed in tops and slopes of barren hills. As vegetation roots system reinforcement, the soil body stress of slope surface was improved, the extent of stress concentration and surface displacement were reduced effectively. The horizontal displacement and vertical displacement were reduced by 15% and 2.5% respectively. The volume of plastic yielded zone was also reduced, the volume of shear plastic zone and tension plastic zone were reduced by 11.48% and 83.99% respectively. The degree of damage of gravitational erosion was mitigated. However, the main failure model in the slope-gully system is still shear failure model. This study will provide a new method for understanding of vegetation root regulation on gravitational erosion.

参考文献

[1] Govers G, Poesen J. Assessment of interrill and rill contribution to total soil loss from an upland field plot [J]. Geomorphology, 1988, 1: 343-354.
[2] Zhou Z C, Shangguana Z P, Zhao D. Modeling vegetation coverage and soil erosion in the Loess Plateau Area of China [J]. Ecological Modelling, 2006, 198: 263-268.
[3] Linda C, Ferdinand B, Alain P. Vegetation indices derived from remote sensing for an estimation of soil protection against water erosion [J]. Ecological Modelling, 1995, 79: 277-285.
[4] Hessel R, Van Theo Asch. Modelling gully erosion for a small catchment on the Chinese Loess Plateau [J]. Catena, 2003, 54: 131-146.
[5] 许炯心. 黄土高原丘陵沟壑区坡面——沟道系统中的高含沙水流: (I)地貌因素与重力侵蚀的影响[J]. 自然灾害学报, 2004, 13(1): 55-60.
[6] 刘秉正, 吴发启. 黄土塬区沟谷侵蚀与发展[J]. 西北林学院学报, 1993, 8(2): 7-15.
[7] Gabet E J, Dunne T. Landslides on coastal sage-scrub and grassland hillslopes in a severe ElNinowinter: The effects of vegetation conversion on sediment delivery [J]. Geological Society of America, 2002(114): 983-990.
[8] Gray D H, Leiser A T. Biotechnical Slope Protection and Erosion Control [M]. Malabar, Fla: Krieger Publishing Co., Inc., 1982.
[9] 王文生, 杨晓华, 谢永利. 公路边坡植物的护坡机理[J]. 长安大学学报, 2005, 25(4): 26-30.
[10] 孙尚海, 张淑芝. 中沟流域的重力侵蚀及其防治[J]. 中国水土保持, 1995(9): 25-27, 50.
[11] Jahn A. The soil creep of slopes in different altitudinal and ecological zones of Sudeten Mountains [J]. Geographical Analysis, 1989, 71: 161-170.
[12] 王光谦, 薛海, 李铁键, 等. 黄土高原沟坡重力侵蚀的理论模型[J]. 应用基础与工程科学学报, 2005, 13(4): 335-344.
[13] 高鹏, 刘作新, 邹桂霞. 丘陵半干旱区小流域土地资源定量化评价研究[J]. 农业工程学报, 2003, 19(6): 298-301.
[14] 崔灵周, 李占斌, 朱永清. 流域侵蚀强度空间分异及动态变化模拟研究[J]. 农业工程学报, 2006, 22(12): 17-22.
[15] Zhang Chao-bo, Chen Li-hua, Liu Ya-ping, et al. Triaxial compression test of soil-root composites to evaluate influence of roots on soil shear strength [J]. Ecological Engineering, 2010, 36(3): 19-26.
[16] Abe K, Ziemer R R. Effect of tree roots on a shear zone: Modeling reinforced shear strength [J]. Canadian Journal of Forest Research, 1991, 21(5): 1012-1019.
[17] Liu X P, Chen L H, Song W F. Study on the shear strength of forest root-loess [J]. Journal of Beijing Forest University, 2006, 28(5): 67-72.
[18] Fan C C, Su C F. Role of roots in the shear strength of root-reinforced soils with high moisture content [J]. Ecological Engineering, 2008, 33(2): 157-166.
[19] Deng W D, Zhou Q H, Yan Q R. Test and calculation of effect of plant root on slope consolidation [J]. China Journal of Highway and Transport, 2007, 20(5): 7-12.
[20] Wu T H, Mckinnell W P, Swanston D N. Strength of tree roots and landslides on Prince of Wales Island, Alaska [J]. Canadian Geotechnical Journal, 1979(1): 19-33.
[21] Wu T H, Beal P E, Lan C. In-situ shear test of soil-root systems [J]. Journal of Geotechnical Engineering, 1988(14): 1376-1394.
[22] 赵丽兵, 张宝贵, 苏志珠. 草本植物根系增强土壤抗剪切强度的量化研究[J]. 中国生态农业学报, 2008, 16(3): 718-722.
[23] Gray D H, Sotir R B. Biotechnical and Soil Bioengineering, Slope Stabilization, A Practical Guide for Erosion Control [M]. New York: John Wiley & Son, 1996.
[24] 张平. 抚顺西露天煤矿地质环境综合治理研究[J]. 采矿技术, 2006, 6(3): 372-374.
[25] 程洪, 张新全. 草本植物根系网固土原理的力学试验探究[J]. 水土保持通报, 2002, 22(5): 20-23.
[26] 张宏波, 姚环, 林燕滨. 香根草护坡稳定性效果浅析[J]. 土工基础, 2008, 22(1): 52-55.
文章导航

/