资源生态

利用蒸散比和气温模拟藏北高寒草甸的光能利用效率

展开
  • 1. 中国科学院 地理科学与资源研究所生态系统网络观测与模拟重点实验室拉萨高原生态系统研究站, 北京 100101;
    2. 中国科学院 研究生院,北京 100049
付刚(1984- ),男,汉,河北保定人,博士研究生,研究方向为高原生态学、 碳循环、 全球变化和遥感应用。E-mail:fugang09@126.com

收稿日期: 2010-10-25

  修回日期: 2011-09-07

  网络出版日期: 2012-03-20

基金资助

国家自然科学基金项目(41171084,40771121);国家重点基础研究发展计划(2010CB833500);国家科技支撑计划项目(2007BAC06B01,2006BACO1A04)。

Modeling Light Use Efficiency of an Alpine Meadow on Northern Tibetan Plateau Using Evaporative Fraction and Air Temperature

Expand
  • 1. Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2010-10-25

  Revised date: 2011-09-07

  Online published: 2012-03-20

摘要

光能利用效率(light use efficiency,LUE)是指初级生产力与植被冠层吸收的光合有效辐射(absorbed photosynthetically active radiation,APAR)之比,对LUE的准确定量化模拟是定量化模拟初级生产力的基础。研究利用一个基于通量观测的LUE模型(EC-LUE)模拟了2004—2005年藏北高寒草甸的LUE,该模型的参数只有蒸散比(Evaporative Fraction,EF)和气温(air temperature,Ta),EFTa分别为最大光能利用效率(maximum light use efficiency,LUEmax)的水分和温度胁迫因子,在研究中LUEmax取0.85 g C/MJ。EFTaLUEmax的胁迫作用存在两种方式:连乘方式和最小限制因子方式,这两种方式模拟的光能利用效率分别记为LUEmultipECLUEminEC,并与通量观测数据估算的LUE(LUEEC)进行了比较。结果表明,LUEminEC显著高估了LUEEC,而LUEECLUEmultipEC差异不显著;LUEmultipECLUEminEC分别解释了89%以上LUEEC的季节变化;EF显著地解释了土壤表层含水量、 比湿,且在一定程度上解释了相对湿度的季节变化;相对于水分胁迫因子,温度胁迫因子更能够解释LUEEC的季节变化。因此,EC-LUE模型可以定量化高寒草甸LUE的季节变化,同时EF可以定量化高寒草甸生态系统水分状况的季节变化。

本文引用格式

付刚, 沈振西, 张宪洲, 石培礼, 何永涛, 孙维, 武建双, 周宇庭 . 利用蒸散比和气温模拟藏北高寒草甸的光能利用效率[J]. 自然资源学报, 2012 , 27(3) : 450 -459 . DOI: 10.11849/zrzyxb.2012.03.011

Abstract

Light use efficiency (LUE) is defined as the ratio of primary production and absorbed light energy by vegetation canopy. The quantifying modeling of primary production is based on the quantifying modeling of LUE. A light use efficiency model developed from eddy covariance (EC) measurements, called EC-LUE, was used to model LUE of alpine meadows on Northern Tibetan Plateau in 2004-2005. The EC-LUE is driven by evaporative fraction (EF) and air temperature (Ta). EF and Ta were the water attenuation scalar (Wscalar) and temperature attenuation scalar (Tscalar) of maximum light use efficiency (LUEmax), respectively. In this study, LUEmax was set to be 0.85 g C/MJ. The integrated attenuation effect of Tscalar and Wscalar on LUEmax could be multiplied or following the Liebig's law. The LUE values simulated by the two approaches were labeled by LUEmultipEC and LUEminEC. The LUE derived from eddy covariance measurements was labeled by LUEEC. The LUEminECwas significantly larger than LUEEC, but the difference between LUEEC and LUEmultipEC was not significant. LUEmultipEC and LUEminEC explained both significantly above 89% seasonal changes of LUEEC. EF significantly explained soil water content (SW) at the depths of 0.05 m and 0.10 m, and specific humidity. Besides, EF also explained relative humidity to some extent. Compared to Wscalar, Tscalar might explain more seasonal variations of LUE based on correlation analysis and multiple stepwise linear regression analysis. Therefore, EC-LUE model could quantify the seasonal change of LUE and EF could quantify the seasonal change of environmental water for alpine meadows.

参考文献

[1] Chen J, Shen M G, Kato T. Diurnal and seasonal variations in light-use efficiency in an alpine meadow ecosystem: Causes and implications for remote sensing [J]. Journal of Plant Ecology—UK,2009,2(4):173-185. [2] Prince S D, Goward S N. Global primary production: A remote sensing approach [J]. Journal of Biogeography,1995,22(4/5): 815-835. [3] Potter C S, Randerson J T, Field C B,et al. Terrestrial ecosystem production: A process model-based on global satellite and surface data [J]. Global Biogeochemical Cycles,1993,7(4):811-841. [4] Yuan W P, Liu S G, Zhou G S,et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes [J]. Agricultural and Forest Meteorology,2007,143 (3/4):189-207. [5] Wu C Y, Niu Z, Tang Q,et al. Remote estimation of gross primary production in wheat using chlorophy II—Related vegetation indices [J] Agricultural and Forest Meteorology,2009,149(6/7):1015-1021. [6] Zhang Y Q, Yu Q, Jiang J,et al. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau [J]. Global Change Biology,2008,14(4):757-767. [7] Venturini V, Bisht G, Islam S,et al. Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida [J]. Remote Sensing of Environment,2004,93(1/2):77-86. [8] Venturini V, Islam S, Rodriguez L. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model [J]. Remote Sensing of Environment,2008,112(1):132-141. [9] Wang K C, Li Z Q, Cribb M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter [J]. Remote Sensing of Environment,2006,102(3/4):293-305. [10] Xu L L, Zhang X Z, Shi P L,et al. Establishment of apparent quantum yield and maximum ecosystem assimilation on Tibetan Plateau alpine meadow ecosystem [J]. Science in China Series D—Earth Sciences, 2005, 48(Supp 1):141-147. [11] Ni J. Carbon storage in grasslands of China [J]. Journal of Arid Environments,2002,50(2):205-218. [12] Ruimy A, Kergoat L, Bondeau A,et al. Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency [J]. Global Change Biology,1999,5 (Supp 1):56-64. [13] Raich J W, Rastetter E B, Melillo J M,et al. Potential net primary productivity in South America—Application of a global-model [J]. Ecological Applications,1991,1(4):399-429. [14] Xiao X M, Hollinger D, Aber J,et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest [J]. Remote Sensing of Environment,2004,89(4):519-534. [15] Falge E, Baldocchi D, Olson R,et al. Gap filling strategies for defensible and annual sums of net ecosystem exchange [J]. Agricultural and Forest Meteorology,2001,107(1):43-69. [16] Goulden M L, Daube B C, Fan S M,et al. Physiological responses of a black spruce forest to weather [J]. Journal of Geophysical Research Atmospheres,1997,102(D24):28987-28996. [17] Xu L L, Zhang X Z, Shi P L,et al. Modeling the maximum apparent quantum use efficiency of alpine meadow ecosystem on Tibetan Plateau [J]. Ecological Modelling,2007,208(2/4):129-134. [18] Xiao X M, Zhang Q Y, Braswell B,et al. Modeling gross primary production of temperature deciduous broadleaf forest using satellite images and climate data [J]. Remote Sensing of Environment,2004,91(2): 256-270. [19] Li Z Q, Yu G R, Xiao X M,et al. Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data [J]. Remote Sensing of Environment,2007,107(3):510-519. [20] Almeida A C, Landsberg J L. Evaluating methods of estimating global radiation and vapor pressure deficit using a dense network of automatic weather stations in coastal Brazil [J]. Agricultural and Forest Meteorology,2003,118(3/4):237-250. [21] 同小娟,李俊,王玲.农田光能利用效率研究进展[J].生态学杂志,2008,27(6):1021-1028. [22] 同小娟,李俊,于强.农田生态系统光能利用效率及其影响因子分析[J].自然资源学报,2009, 24(8):1393-1401. [23] Wang Y L, Zhou G S, Wang Y H. Environmental effects on net ecosystem CO2 exchange at half-hour and month scales over Stipa krylovii steppe in northern China [J]. Agricultural and Forest Meteorology,2008, 148(5):714-722.
文章导航

/