资源研究方法

基于粗糙集和支持向量机的标准农田地力等级评价

展开
  • 浙江大学 公共管理学院,杭州 310029
赖红松(1967- ),男,江西赣县人,博士后,主要从事土地利用规划、土地资源评价和土地资源管理等研究。E-mail: maplhs@163.com

收稿日期: 2011-03-15

  修回日期: 2011-08-15

  网络出版日期: 2011-12-20

Productivity Evaluation of Standard Cultivated Land Based on Rough Set and Support Vector Machine

Expand
  • College of Public Administration, Zhejiang University, Hangzhou 310029, China

Received date: 2011-03-15

  Revised date: 2011-08-15

  Online published: 2011-12-20

摘要

标准农田是耕地的精华,是确保国家粮食安全的关键。科学评价标准农田地力等级对标准农田培肥和土壤改良有着重要意义。将粗糙集(Rough Set,RS)理论和支持向量机(Support Vector Machine,SVM)相结合,提出了基于RS和SVM的标准农田地力等级评价方法,同时,利用遗传算法的并行搜索结构和模拟退火的概率突跳特性,提出了GASA优化SVM参数算法。该方法首先在确定标准农田地力等级评价指标的基础上,利用地力调查样本数据及传统的指数和法评价结果构建RS决策表,应用RS穷尽算法对决策表进行约简,剔除冗余的评价指标,然后用约简后的评价指标作为SVM的输入,运用GASA优化SVM参数算法对SVM进行训练,建立标准农田地力等级的RS-SVM评价模型。应用该方法对温州市鹿城区标准农田地力等级进行评价,与未用RS约简的SVM模型和BP神经网络模型评价结果进行对比,SVM模型和BP神经网络模型的输入指标数均为15个,其评价正确率分别为100%和90%;RS-SVM模型的输入指标数为14个,其评价正确率分别为100%,结果表明,该方法通过RS约简评价指标后,SVM评价精度并没有降低,但降低了SVM输入向量维数和计算复杂度,提高了训练效率;SVM 用于标准农田地力等级评价,具有比BP神经网络更高的评价精度,可有效用于标准农田地力等级评价,为耕地地力评价提供了新方法。

本文引用格式

赖红松, 吴次芳 . 基于粗糙集和支持向量机的标准农田地力等级评价[J]. 自然资源学报, 2011 , 26(12) : 2141 -2154 . DOI: 10.11849/zrzyxb.2011.12.013

Abstract

Standard Cultivated Land (SCL) is the gem of all cultivated land, which is the key of ensuring China's grain security. Scientific evaluating productivity of SCL has a significant sense for improving soil productivity and improving soil of SCL. Integrated Rough Set (RS) theory with Support Vector Machine (SVM),a productivity evaluation method of SCL based on RS and SVM is proposed. Combining the parallel searching structure of genetic algorithms with the probabilistic jumping property of simulated annealing, a GASA-optimized algorithm is put forward for selecting of SVM parameters. In this new evaluating method, on the basis of determining productivity evaluation indexes of SCL, firstly the decision making table is constructed by using the sample data of productivity surveying of SCL and its evaluation results of traditional integrated productivity factors method, and the redundant indexes are removed through the exhaustive reducer of Rosetta software which was jointly developed by Norwegian University of Science and Technology and Warsaw University, then the reduced indexes are used as the input of SVM, finally, the SVM is trained with the training samples through the GASA-optimized algorithm, and the RS-SVM evaluating model of SCL is built. The method is tested on productivity evaluation of SCL of Lucheng District of Wenzhou City, Zhejiang, and its results are compared with that of the SVM without RS reduction method and the BP networks without RS reduction method. The input indexes of the SVM model and the BP networks model are both 15, With correct evaluating rate being 100% and 90% respectively. The input indexes of the RS-SVM model are 14, whose correct evaluating rate is 100%. The results indicate that the suggested SVM method is of the same accuracy as the SVM without RS reduction method,but it can reduce the dimensions of SVM input vectors and the computing complexity of SVM,and raise the SVM training efficiency. The results also show that the method which is used SVM can achieve greater evaluating accuracy than the BP networks without RS reduction method. It is concluded that the suggested SVM method is feasible and effective in evaluating productivity of SCL, and this method has explored a new way for evaluating productivity of cultivated land.

参考文献

[1] 王瑞燕,赵庚星, 李涛. 山东省青州市耕地地力等级评价研究[J]. 土壤, 2004, 36(1): 76-80. [2] 鲁明星, 贺立源, 吴礼树, 等. 基于GIS的华中丘陵区耕地地力评价研究[J]. 农业工程学报, 2006, 22(8): 96-101. [3] 袁秀杰, 赵庚星, 朱雪欣. 平原和丘陵区耕地地力评价及其指标体系衔接研究[J]. 农业工程学报, 2008, 24(7): 65-71. [4] 方灿华, 马友华, 钱国平, 等. 基于GIS的明光市耕地地力评价[J]. 中国农学通报, 2008, 24(12): 308-312. [5] 李贤胜, 叶军华, 杨平, 等. 基于 GIS 的广德县耕地地力定量评价[J]. 土壤, 2009, 41(3): 490-494. [6] 刘永文, 樊燕, 刘洪斌. 丘陵山地耕地地力评价研究[J]. 中国农学通报, 2009, 25(18): 420-425. [7] Dung E J,Sugurnaran R. Development of an agricultural land evaluation and site assessment (LESA) decision support tool using remote sensing and geographic information system [J]. Journal of Soil and Water Conservation, 2005, 60(5): 228-235. [8] 王瑞燕, 赵庚星, 陈丽丽. 基于ANN-产量的耕地地力定量评价模型及其应用[J]. 农业工程学报, 2008, 24(1): 113-118. [9] 阎平凡, 张长水. 人工神经网络与模拟进化计算[M]. 北京: 清华大学出版社, 2000. [10] 王凌. 智能优化算法及其应用[M]. 北京: 清华大学出版社, 2001. [11] 邓乃扬, 田英杰. 数据挖掘中的新方法——支持向量机[M]. 北京: 科学出版社, 2004. [12] Nello Cristianini, John Shawe-Taylor. 支持向量机导论[M]. 北京: 机械工业出版社, 2005. [13] 曹丽娟, 王小明. 金融工程的支持向量机方法[M]. 上海: 上海财经大学出版社, 2007. [14] 梁吉业, 曲开社, 徐宗本. 信息系统的属性约简[J]. 系统工程理论与实践, 2001(12): 76-80. [15] 安利平. 基于粗糙集理论的多属性决策分析[M]. 北京: 科学出版社, 2008. [16] Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning [M]. Reading M A: Addison-Wesley, 1989. [17] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing [J]. Science, 1983, 220(4598): 671-680. [18] Skowron A, Rauszer C. The discernibility matrices and functions in information system //Slowinski R. Intelligent Decision Support, Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht: KIuwer Academic Publishers, 1992: 331-362. [19] Nguyen S H, Nguyen H S. Some efficient algorithms for rough set methods //Proceedings of the Fifth International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU'96). Granada, Spain, 1996: 1451-1456. [20] Hu Xiaohua. Knowledge Discovery in Databases: An Attribute-oriented Rough Set Approach . University of Regina, Canada, 1995. [21] 苗夺谦, 胡桂荣. 知识约简的一种启发式算法[J]. 计算机研究与发展, 1999, 36(6): 681-684. [22] Wroblewski J. Finding minimal reducts using genetic algorithms //Wang P P. Proceedings of the Second Annual Joint Conference on Information Sciences. Wrightsville, Beach, North Carolina, 1995: 186-189. [23] Vinterbo S, hrn A. Minimal approximate hitting sets and rule templates [J]. International Journal of Approximate Reasoning, 2000, 25(2): 123-143. [24] Kryszkiewicz M, Rybinski H. Finding reducts in composed information systems //Ziarko W P. Proceedings of the Second International Workshop on Rough Sets and Knowledge Discovery(RSKD'93). Banff, Alberta, Canada, 1993: 261-273. [25] Starzyk J, Nelson D E, Sturtz K. Reduct generation in information system [J]. Bulletin of International Rough Set Society, 1999, 3(1): 19-22. [26] Bazan G J, Skowron A, Synak P. Dynamic reducts as a tool for extracting laws from decision tables//Polkowski L, Skowron A. International Symposium on Methodologies for Intelligent Systems. Charlotte, NC: Springer-Verlag, 1994: 346-355. [27] Hashemi R R, Jelovsek F R, Razzaghi M. Developmental toxicity risk assessment: A rough sets approach [J]. Methods of Information in Medicine, 1993, 32(1): 47-54. [28] 张文修, 魏玲, 祁建军. 概念格的属性约简理论与方法[J]. 中国科学E缉: 信息科学, 2005, 35(6): 628-639. [29] 范昕炜, 杜树新, 吴铁军. 可补偿类别差异的加权支持向量机算法[J]. 中国图象图形学报, 2003, 8(9): 1037-1042. [30] Kreel U H G. Pairwise classification and support vector machines //Schlkopf B, Burges C J C, Smola A J. Advances in Kernel Methods: Support Vector Learning. Cambridge, Massachusetts: MIT Press, 1999: 255-268. [31] Bottou L, Cortes C, Dcnkcr J, et al. A comparison of classifier methods: A case study in handwritten digit recognition//Proceedings of the 12th International Conference on Pattern Recognition. Jerusalem, 1994: 77-87. [32] Takahashi F, Abe S. Decision-tree-based multi-class support vector machines //Proceedings of the Ninth International Conference on Neural Information Processing. Singapore, 2002, 1418-1422. [33] Platt J C, Cristianini N, Shawe-Taylor J. Large margin DAG's for multi-class classification //Advances in neural information processing systems. Cambridge, Massachusetts: MIT Press, 2000: 547-553. [34] Dietterich T G, Bakiri G. Solving multi-class learning problems via error-correcting output codes [J]. Journal of Artificial Intelligence Research, 1995(2): 263-286. [35] Sebald D J, Buchlew J A. Support vector machines and the multiple hypothesis test problem [J]. IEEE Transactions on Signal Processing, 2001, 49(11): 2865-2872. [36] 王睿. 关于支持向量机参数选择方法分析[J]. 重庆师范大学学报: 自然科学版, 2007, 24(2): 36-38, 42. [37] 邓乃扬, 田英杰. 支持向量机——理论、算法与拓展[M]. 北京: 科学出版社, 2009. [38] 苏高利, 邓芳萍. 关于支持向量回归机的模型选择[J]. 科技通报, 2006, 22(2): 154-158. [39] Chapelle O, Vapnik V, Bousquet O, et al. Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46(1/3): 131-159. [40] Hsu C W, Chang C C, Lin C J. A practical guide to support vector classification . Department of Computer Science and information Engineering, National Taiwan University, 2003. [41] Zheng Chunhong, Jiao Licheng. Automatic parameters selection for SVM based on GA //Proceedings of the 5th World Congress on Intelligent Control and Automation. Hangzhou, China, 2004: 1869-1872. [42] 刘胜, 李妍妍. 自适应GA-SVM 参数选择算法研究[J]. 哈尔滨工程大学报, 2007, 28(4): 398-402. [43] Lee T F, Cho M Y, Shieh C S, et al. Particle swarm optimization-based SVM for Incipient Fault Classification of Power Transformers //Esposito F, Ras Z W, Malerba D, et al. Proceedings of the 16th International Symposium on Methodologies for Intelligent Systems, Foundations of Intelligent Systems, Lecture Notes in Computer Science. Berlin Heidelberg: Springer-Verlag, 2006: 84-90. [44] Huang C M, Lee Y J, Lin D K J, et al. Model selection for support vector machines via uniform design [J]. Computational Statistics & Data Analysis, 2007, 52(1): 335-346. [45] 林丹, 李敏强, 寇纪松. 基于实数编码的遗传算法的收敛性研究[J]. 计算机研究与发展, 2000, 37(11): 1311-1327.
文章导航

/