资源评价

中国华东及其周边地区NDVI对气温和降水的月际响应特征

展开
  • 1. 上海市卫星遥感与测量应用中心,上海 201199;
    2. 上海市气候中心,上海 200030
崔林丽(1975- ),女,山西长治人,副研究员,博士,主要从事卫星遥感气象与生态环境研究。E-mail: cllcontact@yahoo.com.cn

收稿日期: 2009-05-18

  修回日期: 2011-08-03

  网络出版日期: 2011-12-20

基金资助

国家自然科学基金(41001283,40901031);公益性行业(气象)专项(GYHY201106014)。

Inter-monthly Response Characteristics of NDVI to the Variation of Temperature and Precipitation in East China and Its Surrounding Areas

Expand
  • 1. Shanghai Center for Satellite Remote Sensing and Application, Shanghai 201199, China;
    2. Shanghai Climate Center, Shanghai 200030, China

Received date: 2009-05-18

  Revised date: 2011-08-03

  Online published: 2011-12-20

摘要

利用SPOT VGT-NDVI数据和气象站点的气温和降水资料,分析了1998—2010年期间我国华东及其周边地区NDVI对气温和降水变化的时空响应特征。结果表明,在整个研究区,NDVI对当月气温和前1月降水变化响应最为强烈。空间上,NDVI对气温变化的响应在整个研究区差异不明显,而对降水变化的响应在北部地区较在中部和南部强。NDVI在多数地区都同步响应于当月气温变化,在北部和南部一些地区对气温变化滞后响应1个月左右。NDVI对降水变化在北部地区滞后响应1个月左右,而在南部地区滞后响应2~3个月。研究区NDVI对气温和降水响应的时间特征、空间分布及总体滞后期与已有的研究结果基本一致,但在南部地区NDVI对降水变化的响应滞后期较已有的研究结果长。不同的数据源、研究范围、气候和植被类型及土壤特性的差异等都有可能造成研究结果的差异。

本文引用格式

崔林丽, 史军 . 中国华东及其周边地区NDVI对气温和降水的月际响应特征[J]. 自然资源学报, 2011 , 26(12) : 2121 -2130 . DOI: 10.11849/zrzyxb.2011.12.011

Abstract

The interaction between vegetation and atmosphere is important in global climate change and natural resource management and has become a research focus of geosciences in recent years. Spatial and temporal response characteristics of NDVI to the variations of temperature and precipitation in East China and its surrounding areas were analyzed based on the SPOT VGT-DN data from Flemish Institute for Technological Research (VITO), Belgium, and monthly temperature and precipitation data from 135 meteorological stations during 1998-2010. The results indicate that in the whole study area, NDVI has the maximum response to the temperature of the same month, and has the maximum response to the precipitation of previous one month. Spatially, the response of NDVI to temperature has no significant difference among the whole study area, and the response of NDVI to precipitation in the northern part is stronger than that in the middle and southern part of the study area. In the middle part of the study area, NDVI synchronously responds to the variation of temperature in the current month, but in the northern and southern part, it responds to the variation of temperature with a lag of about one month. In the northern part of the study area, NDVI generally responds to the variation of precipitation with a lag of about one month, but in the southern part, it responds to the variation of precipitation with a lag of 2 or 3 months. The temporal response characteristics, spatial distribution and the general lag time of the NDVI to temperature and precipitation in East China and its surrounding areas are consistent with other results, but in the southern part, the lag time of NDVI to the variation precipitation is longer than other results. The difference of data source, study area, climate and vegetation type, and soil property may result in the difference between our and other results.

参考文献

[1] 赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003: 330-334. [2] Tucker C J. Red and photographic infrared liner combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-146 [3] Sellers P J, Berry J A, Collatz G J, et al. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme[J]. Remote Sensing of Environment, 1992, 42(3): 187-216. [4] Turner D P, Cohen W B, Kennedy R E, et al. Relationship between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites[J]. Remote Sensing of Environment, 1999, 70: 52-68. [5] Myneni R B, Tucker C J, Asar G, et al. Interannual variations in satellite-sensed vegetation index data from 1981 to 1991[J]. Journal of Geophysical Research, 1998, 103(6): 6145-6160. [6] 朴世龙, 方精云. 1982~1999年青藏高原植被净第一性生产力及其时空变化[J]. 自然资源学报, 2002, 17(3): 373-380. [7] Fang J Y, Piao S L, He J S, et al. Increasing terrestrial vegetation activity in China, 1982-1999[J]. Science in China Series C, 2004, 47: 229-240. [8] 夏露, 刘咏梅, 柯长青. 基于SPOT4数据的黄土高原植被动态变化研究[J]. 遥感技术与应用, 2008, 23(1): 67-71. [9] 严晓瑜, 董文杰, 何勇. 不同传感器数据在若尔盖湿地植被变化监测应用中的适宜性分析[J]. 遥感技术与应用, 2008, 23(3): 300-304. [10] Walther G R, Post E, Convey P, et al. Ecological responses to recent climate change[J]. Nature, 2002, 416(6879): 389-395. [11] Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature, 2003, 421(6918): 37-42. [12] 杨胜天, 刘昌明, 孙睿. 黄河流域干旱状况变化的气候与植被特征分析[J]. 自然资源学报, 2003, 18(2): 136-141. [13] Fang J Y, Piao S L, Zhou L M, et al. Precipitation patterns alter growth of temperate vegetation[J]. Geophysical Research Letters, 2005, 32(21): L21411. [14] 陈豫英, 陈楠, 郑广芬, 等. 近45a宁夏气温、降水及植被指数的变化分析[J]. 自然资源学报, 2008, 23(4): 626-634. [15] 陈云浩, 李晓兵, 史培军. 1983—1992年中国陆地NDVI变化的气候因子驱动分析[J]. 植物生态学报, 2001, 25(6): 7l6-720. [16] Roerink G J, Menenti M, Su Z, et al. Assessment of climate impact on vegetation dynamics by using remote sensing[J]. Physics and Chemistry of the Earth, 2003, 28: 103-109. [17] Nezlina N P, Kostianoyb A G, Li B L. Inter-annual variability and interaction of remote-sensed vegetation index and atmospheric precipitation in the Aral Sea region[J]. Journal of Arid Environments, 2005, 62: 677-700. [18] Wang J, Rich P M, Price K P. Temporal response of NDVI to precipitation and temperature in the Central Great Plains, USA[J]. International Journal of Remote Sensing, 2003, 24: 2345-2364. [19] 李霞, 李晓兵, 陈云浩, 等. 中国北方草原植被对气象因子的时滞响应[J]. 植物生态学报, 2007, 31(6): 1054-1062. [20] 符淙斌, 温刚, 谢力, 等. 东亚季风区气候和生态系统相互作用的诊断和模拟研究[J]. 南京大学学报: 自然科学版, 2002, 38(3): 281-294. [21] 黄晓东, 李霞, 梁天刚. 北疆地区不同草地类型MODIS植被指数变化动态及其与气候因子的关系[J]. 兰州大学学报: 自然科学版, 2007, 43(3): 42-47. [22] 孙红雨, 王长耀, 牛铮, 等. 中国地表植被覆盖变化及其与气候因子关系——基于NOAA时间序列数据分析[J]. 遥感学报, 1998, 2(3): 204-210. [23] Malo A R, Nicholson S E. A study of rainfall and vegetation dynamics in the African Sahel using normalized difference vegetation index[J]. Journal of Arid Environments, 1990, 19: 1-24. [24] Davenport M, Nicholson S E. On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in East Africa[J]. International Journal of Remote Sensing, 1993, 14: 2369-2389. [25] Nicholson S E, Farrar T J. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI response to rainfall[J]. Remote Sensing of Environment, 1994, 50: 107-120. [26] 李晓兵, 史培军. 中国典型植被类型NDVI动态变化与气温、降水变化的敏感性分析[J]. 植物生态学报, 2000, 24(3): 379-382. [27] 徐兴奎, 林朝晖, 薛峰, 等. 气象因子与地表植被生长相关性分析[J]. 生态学报, 2003, 23(2): 221-230. [28] Schmidt H, Karnieli A. Remote sensing of the seasonal variability of vegetation in a semi-arid environment[J]. Journal of Arid Environments, 2000, 45: 43-59. [29] 陈晓光, 李剑萍, 韩颖娟, 等. 宁夏近20年来植被覆盖度及其与气温降水的关系[J]. 生态学杂志, 2007, 26(9): 1375-1383. [30] 温刚, 符淙斌. 中国东部季风区植被物候季节变化对气候响应的大尺度特征: 多年平均结果[J]. 大气科学, 2000, 24(5): 676-682. [31] Schultz P A, Halpert M S. Global correlation of temperature, NDVI and precipitation[J]. Advances in Space Research, 1993, 13: 277-280. [32] Braswell B H, Schimel D S, Linder E, et al. The response of global terrestrial ecosystems to interannual temperature variability[J]. Science, 1997, 278: 870-873. [33] Zhou L M, Kaufmann R K, Tian Y, et al. Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999[J]. Journal of Geophysical Research, 2003, 108, doi: 10.1029/2002JD002510. [34] Jobbagy E G, Sala O E, Paruelo J M. Patterns and controls of primary production in the Patagonian steppe: A remote sensing approach[J]. Ecology, 2002, 83: 307-319.
文章导航

/