资源生态

遥感数据结合Biome-BGC模型估算黄淮海地区生态系统生产力

展开
  • 1. 遥感科学国家重点实验室, 北京 100875;
    2. 北京师范大学 地理学与遥感科学学院, 北京 100875;
    3. 环境遥感与数字城市北京市重点实验室, 北京 100875;
    4. 宁波市气象局, 浙江 宁波 315012
胡波(1983- ),男,湖北武汉人,硕士,主要研究应用气象与遥感。E-mail: hbhutao@gmail.com

收稿日期: 2010-11-29

  修回日期: 2011-08-04

  网络出版日期: 2011-12-20

基金资助

国家自然科学基金资助项目 (40971221,40501045);北京市重点实验室共建项目(000-105803)。

Estimation of the Net Ecosystem Productivity in Huang-Huai Hai Region Combining with Biome-BGC Model and Remote Sensing Data

Expand
  • 1. State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and the Institute of Remote Sensing Applications, CAS, Beijing 100875, China;
    2. School of Geography and Remote Sensing Sciences, Beijing Normal University, Beijing 100875, China;
    3. Beijing Key Lab for Remote Sensing of Environment and Digital Cities, Beijing 100875, China;
    4. Ningbo Meteorological Bureau, Ningbo 315012, China

Received date: 2010-11-29

  Revised date: 2011-08-04

  Online published: 2011-12-20

摘要

植被净生态系统生产力(NEP)和净第一性生产力(NPP)作为表征植被活动的关键变量,在全球变化研究及区域生态环境评价中起着很重要的作用。Biome-BGC是一个模拟生态系统植被和土壤中的能量、水、碳、氮的流动和存储的生物地球化学循环模型。论文利用2004年时间序列MODIS LAI遥感产品和气象数据,对黄淮海地区的NEP和NPP进行了模拟估算,由于Biome-BGC模型没有农作物生理生态参数,农作物模拟通过修改草地生理生态参数,并在增加施肥、灌溉和收割代码基础上实现。结果表明,2004年黄淮海地区NEP、NPP呈现南部大于北部的空间分布特征;不同植被类型平均NEP和NPP大小顺序分别为:混交林>落叶阔叶林>常绿针叶林>农作物>灌木>草地、混交林>农作物>落叶阔叶林>常绿针叶林>灌木>草地;与观测数据、MODIS NPP产品和统计数据进行对比,表明Biome-BGC模型可较好用于区域植被生产力的模拟,农作物模拟结果与统计数据的决定系数达到0.612 3,且模拟得到的黄淮海地区农作物NPP比MODIS NPP产品更接近统计值。

本文引用格式

胡波, 孙睿, 陈永俊, 冯丽超, 孙亮 . 遥感数据结合Biome-BGC模型估算黄淮海地区生态系统生产力[J]. 自然资源学报, 2011 , 26(12) : 2061 -2071 . DOI: 10.11849/zrzyxb.2011.12.006

Abstract

As two key variables to represent vegetation activities, the Net Ecosystem Production(NEP) and the Net Primary Productivity(NPP)played important roles in the study of global change and regional ecological environment evaluation. Biome-BGC was a biogeochemical cycles model, which could simulate the storage and fluxes of water, carbon and nitrogen within the vegetation and soil components of a terrestrial ecosystem. In this paper, in use of the series of MODIS LAI product and the meteorological data in 2004, we simulated the NEP and NPP in the Huang-Huai-Hai Region. Since there was no crop eco-physiological parameters in the Biome-BGC model, we simulated the crop by modifying the grass eco-physiological parameters, and adding the code of fertilizers, irrigation and harvest.The simulated results showed that the NEP and NPP were greater in the southern part of the region.The respective order of average NEP and NPP of different vegetation types was as follows: mixed forest, deciduous broadleaf forest, evergreen needleleaf forest, crop, shrub and grassland; and mixed forest, crop,deciduous broadleaf forest, evergreen needleleaf forest, shrub and grassland.Compared to the observation data, MODIS NPP product and the statistical data, we found that Biome-BGC model successfully simulated the regional vegetation productivity, and the coefficient of determination between the simulated NPP of crop and the statistical data had reached 0.6123. In addition, the simulated result of crop NPP in the Huang-Huai-Hai Region was closer to the statistical data than the MODIS NPP product.

参考文献

[1] 孙睿, 朱启疆. 中国陆地植被第一性生产力及季节变化研究[J]. 地理学报, 2000, 55(1): 36-45. [2] 孙睿, 朱启疆. 陆地植被净第一性生产力的研究[J]. 应用生态学报, 1999, 10(6): 757-760. [3] Hunt E R, Piper S C, Nemani R, et al. Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model[J]. Global Biogeochemical Cycles, 1996, 10: 431-456. [4] 孙睿, 朱启疆. 气候变化对中国陆地植被净第一性生产力影响的初步研究[J]. 遥感学报, 2001, 5(1): 58-61. [5] 朴世龙, 方精云, 郭庆华. 利用CASA模型模拟估算我国植被净第一性生产力[J]. 植物生态学报, 2001, 25(5): 603-608. [6] Running S W, Hunt E R. Generalization of a forest ecosystem process model for other biomes, Biome-BGC, and an application for global-scale models[M]//Ehleringer J R, Field C B. Scaling Physiological Processes: Leaf to Globe. San Diego: Academic Press, 1993. [7] McGuire A D, Melillo J M, Kicklighter D W, et al. Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates[J]. Journal of Biogeography, 1995, 22: 785-796. [8] Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production:A process model based global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7(4): 811-841. [9] Field C B,Randerson J T, Malmstrom C M.Global net primary production: Combining ecology and remote sensing[J]. Remote Sensing of Environment, 1995, 51: 74-88. [10] Baker I T, Denning A S, Hanan N, et al. Simulated and observed fluxes of sensible and latent heat and CO2 at the WLEF-TV Tower using SiB2.5[J]. Global Change Biology, 2003, 9: 1262-1277. [11] Baker I T, Denning A S, Prihodko L, et al. Global Net Ecosystem Exchange (NEE) of CO2 . http://www.daac.ornl.gov.Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. 2008. [12] Thornton P E, Law B E, Gholz H L, et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J]. Agricultural and Forest Meteorology, 2002, 113: 185-222. [13] Turner D P, Ritts W D, Law B E, et al. Scaling net ecosystem production and net biome production over a heterogeneous region in the western United States[J]. Biogeosciences Discussions, 2007, 4: 1093-1135. [14] 侯满平. 黄淮海平原农业结构调整及农业发展战略研究. 北京: 中国农业大学, 2004. [15] 中国科学院南京土壤研究所. 中国土壤图集[M]. 北京: 地图出版社, 1986. [16] 张福春, 王德辉, 丘宝剑. 中国农业物候图集[M]. 北京: 科学出版社, 1987. [17] Chen J M, Deng F, Chen M Z. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44: 2230-2238. [18] 翁笃鸣, 孙治安. 我国山地气温直减率的初步研究[J]. 地理研究, 1984, 3(2): 24-34. [19] http://www.unc.edu/courses/2007fall/geog/711/001/software/mtclim/. [20] Zhong Q, Su G L, Zhang J E, et al. Identificaiton of important factors for water vapor flux and CO2 exchange in a cropland[J]. Ecological Modelling, 2010, 221: 575-581. [21] 林业科学数据中心. 第6次一类清查森林资源统计数据. http://www.cfsdc.org/. [22] 李文华, 李飞. 中国森林资源研究[M]. 北京: 中国林业出版社, 1996: 12-13. [23] Schmid S, Zierl B, Bugmann H. Analyzing the ecosystem carbon dynamics of central European forests: Comparison of Biome-BGC simulations with measurements[J]. Regional Environmental Change, 2006, 6: 167-180. [24] Cienciala E, Tatarinov F A. Application of Biome-BGC model to managed forests: 2. Comparison with long-term observations of stand production for major tree species[J]. Forest Ecology and Management, 2006, 237: 252-266. [25] White M A, Thornton P E, Running S W, et al. Parameterization and sensitivity analysis of the Biome-BGC terrestrial ecosystem model: Net primary production controls[J]. Earth Interactions, 2000, 43: 1-85. [26] Thornton P E. User's Guide for Biome-BGC, Version 4.1.1. ftp://daac.ornl.gov/data/model_archive/BIOME_BGC/biome_bgc_4.1.1/comp/bgc_users_guide_411.pdf.2000. [27] White M A, Running S W, Thornton P E. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest[J]. International Journal of Biometeorology, 1999, 42: 139-145. [28] Falge E, Baldocchi D D, Tenhunen J D, et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements[J]. Agricultural and Forest Meteorology, 2002, 113: 53-74. [29] Lei H M, Yang D W. Seasonal and interannual variations in carbon dioxide exchange over a cropland in the North China Plain[J]. Global Change Biology, 2010, 16: 2944-2957. [30] 李琪, 胡正华, 薛红喜, 等. 淮河流域典型农田生态系统碳通量变化特征[J]. 农业环境科学学报, 2009, 28(12): 2545-2550. [31] 曲奕威. 豫北平原冬小麦-夏玉米典型农田生态系统碳通量的研究. 郑州: 河南农业大学, 2008. [32] 李俊, 于强, 孙晓敏, 等. 华北平原农田生态系统碳交换及其环境调控机制[J]. 中国科学D辑: 地球科学, 2006, 36(增刊1): 210-223. [33] Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial primary production[J]. Nature, 1993, 363: 234-240. [34] Liu J, Chen J M, Cihlar J, et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs[J]. Remote Sensing of Environment, 1997, 62: 158-175. [35] 陶波, 李克让, 邵雪梅, 等. 中国陆地净初级生产力时空特征模拟[J]. 地理学报, 2003, 58(3): 372-380. [36] Zhang Y Q, Yu Q, Jiang J, et al. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau[J]. Global Change Biology, 2008, 14: 757-767. [37] http://tongji.cnki.net/Kns55/Navi/Navidefault.aspx?uid=WEEvREdiSUtucElBV1VFSHc1ZjBzVEszbDRmSEpZdz0=&p=. [38] http://www.china001.com/show_hdr.php?xname=PPDDMV0&dname=78NSK41&xpos=9. [39] 张希彪. 陇东黄土高原沟壑区农业资源生产潜力及其开发[J]. 水土保持学报, 2004, 11(3): 95-97.
文章导航

/