资源生态

闽江河口湿地互花米草入侵机制

展开
  • 福建师范大学 a.湿润亚热带生态-地理过程省部共建教育部重点实验室, b.亚热带湿地研究中心,c.地理科学学院,福州350007
王维奇(1982- ),男,满族,辽宁沈阳人,博士生,助理研究员,主要研究湿地生物地球化学循环。E-mail: wangweiqi15@163.com

收稿日期: 2010-08-31

  修回日期: 2011-01-19

  网络出版日期: 2011-11-20

基金资助

国家自然科学基金资助项目(31000209,31000262);福建省公益类研究所专项(2011R1037-5);福建省教育厅资助项目(JB11030)。

Invasion Mechanism of Spartina alterniflora in Minjiang River Estuarine Wetland

Expand
  • a. Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, b. Research Centre of Wetlands in Subtropical Region, c. School of Geographical Science, Fujian Normal University, Fuzhou 350007, China

Received date: 2010-08-31

  Revised date: 2011-01-19

  Online published: 2011-11-20

摘要

为了阐明湿地植物入侵的机制,选择闽江河口湿地为研究区域,通过野外采样和室内分析,对入侵种互花米草和土著种短叶茳芏根冠生物量、养分在植物体内的分配以及植物养分的生态化学计量学特征进行了测定与分析。结果表明:①互花米草根冠比季节变化范围是0.49~1.64,平均值为1.11,低于短叶茳芏(变化范围是3.11~7.95,平均值为5.29);②互花米草季节平均的氮磷养分分配顺序为叶>根>茎,而土著种短叶茳芏按照叶>茎>根的顺序分配;③互花米草叶、茎季节平均C/N和C/P均表现出高于短叶茳芏,而根则低于短叶茳芏,N/P则均表现为互花米草叶、茎、根高于短叶茳芏;④较高的地上生物量分配、同化器官(叶)和繁殖器官(根)养分分配以及C/N、C/P和N/P是互花米草得以成功入侵的主要原因之一。

本文引用格式

王维奇, 徐玲琳, 曾从盛, 仝川, 张林海 . 闽江河口湿地互花米草入侵机制[J]. 自然资源学报, 2011 , 26(11) : 1900 -1907 . DOI: 10.11849/zrzyxb.2011.11.009

Abstract

To clarify the mechanism of plant invasion, based on field investigation and laboratory analysis, taking Minjiang River estuarine wetland as a case, root-shoot ratio, nutrient distribution and nutrient ecological stoichiometry were measured and analyzed. The results showed that seasonal root-shoot ratio of Spartina alterniflora was 0.49-1.64 and the averaged value was 1.11, which was lower than that of native Cyperus malaccensis var. brevifolius (root-shoot ratio was 3.11-7.95 and the averaged value was 5.29). Seasonal averaged nutrient distribution to root, stem and leaf followed the order of leaf>root>stem for Spartina alterniflora, but leaf>stem>root for Cyperus malaccensis var. brevifolius. Spartina alterniflora leaf and stem seasonal averaged C/N and C/P were higher than Cyperus malaccensis var. brevifolius, and the root C/N and C/P were lower, Spartina alterniflora leaf, stem and root seasonal averaged N/P were higher than Cyperus malaccensis var. brevifolius. Successful invasion of Spartina alterniflora was caused by higher allocation of aboveground biomass, assimilation organ (leaf) and reproduction organ (root) nutrients, as well as higher C/N, C/P and N/P ratios.

参考文献

[1] Sala O E, Chapin III F S, Armesto J J, et al. Global biodiversity scenarios for the year 2100[J]. Science, 2000, 287: 1770-1774. [2] Davis M A. Biotic globalization: does competition from introduced species threaten biodiversity?[J] Bioscience, 2003, 53: 481-489. [3] Hooper D U, Chapin III F S, Ewel J J, et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge[J]. Ecological Monographs, 2005, 75: 3-35. [4] Srivastava D S, Vellend M. Biodiversity-ecosystem function research: Is it relevant to conservation[J]. Annual Review of Ecology, Evolution, and Systematics, 2005, 36: 267-294. [5] Blumenthal D, Mitchell C E, Pyek P, et al. Synergy between pathogen release and resource availability in plant invasion[J]. Proceeding of the National Academy of Sciences of the United States of America, 2009, 106: 7899-7904. [6] Keane R M, Grawley M J. Exotic plant invasions and the enemy release hypothesis[J]. Trends in Ecology and Evolution, 2002, 17: 164-170. [7] An S Q, Gu B H, Zhou C D, et al. Spartina invasion in China: Implications for invasive species management and future research[J]. Weed Research, 2007, 47: 183-191. [8] Zhou C F, An S Q, Deng Z F, et al. Sulfur storage changed by exotic Spartina alterniflora in coastal saltmarshes of China[J]. Ecological Engineering, 2009, 35: 536-543. [9] Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3: 540-550. [10] González A L, Kominoski J S, Danger M, et al. Can ecological stoichiometry help explain patters of biological invasions?[J] Oikos, 2010, 119: 779-790. [11] Naddafi P, Eklv P, Pettersson K. Stoichiometric constraints do not limit successful invaders: zebra mussels in Swedish lakes[J]. PloS One, 2009, 4: e5345. [12] Smith A S, Acharya K, Jack J. Overcrowding, food and phosphorus limitation effects on ephipphia production and population dynamics in the invasive species Daphnia lumholtzi[J]. Hydrobiologia, 2009, 618: 47-56. [13] Wang H, Dunning K, Elser J J, et al. Daphnia species invasion, competitive exclusion, and chaotic coexistence[J]. Discrete and Continuous Dynamical Systems Series B, 2009, 12: 481-493. [14] Funk J L. Differences in plasticity between invasive and native plants from a low resource environment[J]. Journal of Ecology, 2008, 96: 1162-1173. [15] Pezeshki S R, DeLaune R D. Carbon assimilation in contrasting streamside and inland Spartina alterniflora salt marsh[J]. Plant Ecology, 1988, 76: 55-61. [16] Davis III S E, Childers D L, Noe G B. The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation[J]. Hydrobiologia, 2006, 569: 87-97. [17] 邓自发, 安树青, 智颖飙, 等.外来种互花米草入侵模式与爆发机制[J].生态学报, 2006, 26(8): 2678-2686. [18] 刘剑秋, 曾从盛, 陈宁.闽江河口湿地研究[M].北京: 科学出版社, 2006: 330-334. [19] 曾从盛, 张林海, 仝川.闽江河口湿地芦苇和互花米草氮、磷养分季节动态[J].湿地科学, 2009, 7(1): 16-24. [20] 曾从盛, 张林海, 仝川.闽江河口湿地短叶茳芏氮、磷含量与积累量季节变化[J].生态学杂志, 2009, 28(5): 788-794. [21] 张林海, 曾从盛, 仝川.闽江河口湿地芦苇和互花米草生物量季节动态研究[J].亚热带资源与环境学报, 2008, 3(2): 25-33. [22] Ågren G I. Stoichiometry and nutrition of plant growth in nature communities[J]. Annual Review of Ecology, Evolution, and Systematics, 2008, 39: 153-170. [23] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceeding of the National Academy of Sciences of the United States of America, 2004, 101: 11001-11006. [24] Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10: 1135-1142. [25] 王卿, 安树青, 马志军, 等.入侵植物互花米草——生物学、生态学及其管理[J].植物分类学报, 2006, 44(5): 559-588. [26] Bagwell C E, Lovell C R. Microdiversity of culturable diazotrophs from the rhizoplanes of the salt marsh grasses Spartina alterniflora and Juncus roemerianus[J]. Microbial Ecology, 2000, 39: 128-136. [27] Funk J L, Vitousek P M. Resource-use efficiency and plant invasion in low-resource systems[J]. Nature, 2007, 446: 1079-1081. [28] Vernberg F J. Salt-marsh processes: A review[J]. Environmental, Toxicology and Chemistry, 1993, 12: 2167-2182. [29] 闫芊, 何文珊, 陆健健. 崇明东滩湿地植被演替过程中生物量与氮含量的时空变化[J]. 生态学杂志, 2006, 25(9): 1019-1023. [30] 徐国万, 卓荣宗, 曹豪, 等. 互花米草生物量年动态及其与滩涂生境的关系[J].植物生态学与植物学学报, 1989, 13(3): 230-235. [31] Patriquin D G, McClung C R. Nitrogen accretion, and the nature and possible significance of N2 fixation (acetylene reduction) in a Nova Scotian Spartina alterniflora stand[J].Marine Biology, 1978, 47: 227-242. [32] Blumenthal D. Interactions between resource availability and enemy release in plant invasion[J].Ecology Letters, 2006, 9: 887-895.
文章导航

/